Year 2017, Volume 4 , Issue 2, Pages 159 - 164 2017-09-01

Geometric Soft Sets

Omer AKGULLER [1]


Snew concept called geometric soft sets to present and analyze the geometrical, topological, oft sets are efficient tools to determine uncertainty in systems. In this study, we introduce a
Soft set sheory, Computational geometry, Soft computation, Network analysis
  • Çağman N, Deli I. Means of FP-soft sets and their applications. Hacettepe Journal of Mathematics and Statistics 41 (5) (2012)
  • Çağman N, Enginoğlu S, Çıtak F. Fuzzy soft set theory and its applications. Iranian Journal of Fuzzy Systems 8 (3) (2011) 137—147.
  • Chi KT, Liu J, Lau FC. A network perspective of the stock market. Journal of Empirical Finance 17 (4) (2010) 659—667.
  • Deli I. Convex and concave soft sets and some properties. arXiv preprint (2013) arXiv:1307.4960.
  • Deli I. Interval-valued neutrosophic soft sets and its decision making. International Journal of Machine Learning and Cybernetics 8 (2) (2015) 1—12.
  • Dogan D. Average lower domination number for some middle graphs. Mathematical Combinatorics 4 (2012) 58—67.
  • Dogan D, Dundar P. The average covering number of a graph. Journal of Applied Mathematics 2013 (2013) Article ID 849817.
  • Dogan Durgun D, Altundağ FN. Liar’s Domination in Graphs. Bulletin of International Mathematical Virtual Instutite 7 (2017) 407—415.
  • Dogan Durgun D, Lökçü B. Strong Domination Number of Some Graphs. CBU Journal of Science 11 (2) (2015) 89—91.
  • Jun YB. Soft BCK/BCI-algebras. Computers and Mathematics with Applications 56 (10) (2008) 2621—2628.
  • Ge X, Li Z, Ge Y. Topological spaces and soft sets. Journal of Computational Analysis and Applications 13 (5) (2011) 881—885. Mathematics and Computers in Simulation 80 (5) (2010) 887—893.
  • Khan MS, Al-Garadi MA, Wahab AWA, Herawan T. An alternative data filling approach for prediction of missing data in soft sets (ADFIS). SpringerPlus 5 (1) (2016) 1348.
  • Kimoto T, Asakawa K, Yoda M, Takeoka M. Stock market prediction system with modular neural networks. In Neural Networks, paper presented at: 1990 IJCNN International Joint Conference, pp. 1-6, 1990.
  • Kleinberg R. Geographic routing using hyperbolic space. Paper presented at INFOCOM 2007. 2f6th IEEE International Conference on Computer Communication, 2007.
  • Majeed SN. Some notions on convex soft sets. Annals of Fuzzy Mathematics and Informatics 12 (4) (2016) 517—526.
  • Maji PK, Biswas R, Roy A. Soft set theory. Computers & Mathematics with Applications 45 (4-5) (2003) 555—562.
  • Molodtsov D. Soft set theory—first results. Computers & Mathematics with Applications 37 (4-5) (1999) 19—31.
  • Narayan O, Saniee I. Large-scale curvature of networks. Physics Review E 84 (2011) 066108.
  • Öztunç S. Some properties of soft categories. International Journal of Modeling and Optimization 6 (2) (2016) 91—95.
  • Öztunç S, İhtiyar S. Properties of Soft Homotopy in Digital Images. American Institute of Physics, 1798 (2017) 020120.
  • Sreejith RP, Mohanraj K, Jost J, Saucan E, Samal A. Forman curvature for complex networks. Journal of Statistical Mechanics: Theory and Experiment 6 (2016) 063206.
  • Strogatz SH. Exploring complex networks. Nature 410 (2001) 268—276.
  • Yüksel Ş, Güzel Ergül Z, Tozlu N. Soft covering based rough sets and their application. The Scientific World Journal (2014)
Primary Language en
Journal Section Research Article
Authors

Author: Omer AKGULLER
Institution: Muğla Sıtkı Koçman University, Mathematics Department, Muğla, Turkey

Dates

Application Date : May 7, 2021
Acceptance Date : May 7, 2021
Publication Date : September 1, 2017

Bibtex @ { hjse859983, journal = {Hittite Journal of Science and Engineering}, issn = {}, eissn = {2148-4171}, address = {Hitit Üniversitesi Mühendislik Fakültesi Kuzey Kampüsü Çevre Yolu Bulvarı 19030 Çorum / TÜRKİYE}, publisher = {Hitit University}, year = {2017}, volume = {4}, pages = {159 - 164}, doi = {10.17350/HJSE19030000063}, title = {Geometric Soft Sets}, key = {cite}, author = {Akguller, Omer} }
APA Akguller, O . (2017). Geometric Soft Sets . Hittite Journal of Science and Engineering , 4 (2) , 159-164 . DOI: 10.17350/HJSE19030000063
MLA Akguller, O . "Geometric Soft Sets" . Hittite Journal of Science and Engineering 4 (2017 ): 159-164 <https://dergipark.org.tr/en/pub/hjse/issue/59666/859983>
Chicago Akguller, O . "Geometric Soft Sets". Hittite Journal of Science and Engineering 4 (2017 ): 159-164
RIS TY - JOUR T1 - Geometric Soft Sets AU - Omer Akguller Y1 - 2017 PY - 2017 N1 - doi: 10.17350/HJSE19030000063 DO - 10.17350/HJSE19030000063 T2 - Hittite Journal of Science and Engineering JF - Journal JO - JOR SP - 159 EP - 164 VL - 4 IS - 2 SN - -2148-4171 M3 - doi: 10.17350/HJSE19030000063 UR - https://doi.org/10.17350/HJSE19030000063 Y2 - 2021 ER -
EndNote %0 Hittite Journal of Science and Engineering Geometric Soft Sets %A Omer Akguller %T Geometric Soft Sets %D 2017 %J Hittite Journal of Science and Engineering %P -2148-4171 %V 4 %N 2 %R doi: 10.17350/HJSE19030000063 %U 10.17350/HJSE19030000063
ISNAD Akguller, Omer . "Geometric Soft Sets". Hittite Journal of Science and Engineering 4 / 2 (September 2017): 159-164 . https://doi.org/10.17350/HJSE19030000063
AMA Akguller O . Geometric Soft Sets. Hittite J Sci Eng. 2017; 4(2): 159-164.
Vancouver Akguller O . Geometric Soft Sets. Hittite Journal of Science and Engineering. 2017; 4(2): 159-164.
IEEE O. Akguller , "Geometric Soft Sets", Hittite Journal of Science and Engineering, vol. 4, no. 2, pp. 159-164, Sep. 2017, doi:10.17350/HJSE19030000063