Research Article
BibTex RIS Cite

Determination of Morphological and Physiological Changes of Ornamental Cabbage (Brassica oleracea var. acephala) against Boron Toxicity in Phytoremediation

Year 2021, Volume: 38 Issue: 1, 29 - 38, 01.06.2021
https://doi.org/10.16882/hortis.867761

Abstract

Boron toxicity in agricultural lands limits plant breeding as a plant nutrition problem. Some plants are able to tolerate high levels of heavy metals at potentially toxic doses, accumulate them in their bodies and remove them from the soil. In this study, it was aimed to determine the morphological and physiological responses of ornamental cabbage in phytoremediation against boron toxicity. This study was conducted under controlled greenhouse conditions, 4 different boron doses (0, 10, 25, and 50 mg kg-1 B) were applied to 2 different soil structures (acidic (S1) and alkaline (S2) soils). Toxicity symptoms were appeared at 50 mg kg-1 B. At alkaline soil, plant weights and visual properties of plants were found to be low in quality. Results show that as the boron dose increased, shoot-root fresh and dry weight, stomatal conductance, chlorophyll content, relative water content (RWC) were decreased. Boron accumulation in the shoot, root and whole plant was at 50 mg kg-1 B. As a result, it is understood that ornamental cabbage used for decontamination of boron element by phytoremediation method for the first time in this study. We suggest that it has a potential to as hyper-accumulator plant for the remediation of boron-contaminated soil.

References

  • Akıncı, İ.E. (2006). Effect of boron toxicity on yield and plant characteristics in red pepper (Capsicum annuum L.). VI. Vegetables Farming Symposium, 19-22 Eylül 2006; Kahramanmaraş/ Türkiye, p:290-295. (In Turkish).
  • Akoğlu, A. (2013). The response of some common bean (Phaseolus vulgaris L.) genotypes to boron applications. M.Sc Thesis, Eskişehir Osmangazi University, Eskişehir, (in Turkish).
  • Alaboudia, K.A., Ahmeda, B., & Brodie, G. (2018). Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant. Annals of Agricultural Sciences, 63:123–127.
  • Ali, H., Khan, E., & Sajad, M.A. (2013). Phytoremediation of heavy metals – Concepts and applications. Chemosphere, 91:869-881.
  • Ayvaz, M. (2009). Effects of excess boron on enzyme activity changes, protein and auxin contents of potatoes (Solanum tuberosum L.). PhD Thesis, Ege University, İzmir, (in Turkish).
  • Brdar-Jokanovic, M. (2020). Boron toxicity and deficiency in agricultural plants. International Journal of Molecular Sciences, 21:1424.
  • Chapman, V.J., Edwards, D.G., Blamey, F.P.C., & Asher, C.J. (1997). Challenging the dogma of a narrow supply range between deficiency and toxicity of boron. pp. 151-155. In: Bell R.W., Rerkasem B. (eds) Boron in Soils and Plants. Developments in Plant and Soil Sciences Kluwer Academic Publishers, Dordrecht.
  • de Abreu, C.A., van Raij, B., de Abreu, M.F., & González, A.P. (2005). Routine soil testing to monitor heavy metals and boron. Scientia Agricola, 62:564–571.
  • Dhanda, S., & Sethi, G. (1998). Inheritance of excised-leaf water loss and relative water content in bread wheat (Triticum aestivum). Euphytica, 104:39–47.
  • Eraslan, F., Inal, A., Gunes, A., & Alpaslan, M. (2007). Boron toxicity alters nitrate reductase activity, proline accumulation, membrane permeability, and mineral constituents of tomato and pepper plants. Journal of Plant Nutrition, 30:981-994.
  • Erdal, Ş. (2016). Determination of selection criteria associated with grain yield under normal and drought stress conditions in maize. Derim, 33:131-143 (in Turkish).
  • Gall, J.E., & Rajakarun, N. (2013). The physiology, functional genomics, and applied ecology of heavy metal-tolerant Brassicaceae. pp. 121-148. In: Lang, M. (ed.), Brassicaceae: Characterization, Functional Genomics and Health Benefits (Ed. Minglin Lang), Nova Science Publishers, Inc., NY, USA.
  • García-Sáncheza, F., Simón-Graoa, S., Martínez-Nicolásb, J.J., Alfosea-Simóna, M., Liuc, C., Chatzissavvidisd, C., Pérez-Péreze, J.G., & Cámara-Zapatab, J.M. (2020). Multiple stresses occurring with boron toxicity and deficiency in plants. Journal of Hazardous Materials, 397:122713.
  • Gence, C.Ç. (2015). Determination of resistance of Triticum spelta to boron toxicity. MSc Thesis, Gaziosmanpaşa University, Tokat (in Turkish).
  • Goldberg, S. (1997). Reactions of bor with soils. Plant and Soil, 193:35-48.
  • Güneş, A, Alpaslan, M. Özcan, H., & Çıkılı, Y. (2000a). Tolerance to boron toxicity of maize (Zea mays L.) cultivars widely cultivated in Turkey. Turkish Journal of Agriculture and Forestry, 24:277-282 (in Turkish).
  • Güneş, A., Alpaslan, M., Çikili, Y., & Özcan, H. (2000b). Effect of zinc on the alleviation of boron toxicity in tomato. Journal of Plant Nutrition, 22:1061-1068.
  • Güneş, A., Soylemezoğlu G., Inal A., Bagci E.G., Coban S., & Sahin O. (2006). Antioxidant and stomatal responses of grapevine (Vitis vinifera L.) to boron toxicity. Scientia Horticulturae, 110:279-284.
  • Harite, Ü. (2008). Boron toxicity in cotton. MSc Thesis, Adnan Menderes University, Aydın (in Turkish).
  • Hasnain, A., Mahmood, S., Akhtar, S., Malik, S.A., & Bashir, N. (2011). Tolerance and toxicity levels of boron in mung bean (Vigna radiata (L.) Wilczek) cultivars at early growth stages. Pakistan Journal of Botany, 43:1119-1125.
  • Kacar, B., & İnal, A. (2008). Plant Analysis. Nobel Press, No: 1241 (in Turkish).
  • Kacar, B. & Katkat, A.V. (2007). Plant Nutrition. Nobel Press, pp: 536-537, Ankara.
  • Karaömerlioğlu, B. (2011). Research on boron removal from soil using Medicago sativa L. and Vicia sativa L. plants. MSc Thesis, Çukurova University, Adana (in Turkish). Keskin, H. (2010). Determination of the effects of boron toxicity on basic physiological and biochemical characteristics of barley (Hordeum vulgare) varieties and Puccinellia distans. MSc Thesis, Selçuk University, Konya (in Turkish).
  • Khalid, S., Shahid, M., Niazi, N.K., Murtaza, B., Bibi, I., & Dumat, C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 182:247-268.
  • Koohkan, H., & Maftoun, M. (2016). Effect of nitrogen-boron interaction on plant growth and tissue nutrient concentration of canola (Brassica napus L.). Journal of Plant Nutrition, 39:922-931.
  • Kumar, D. (1995). Salt tolerance in oilseed brassicas-present status and future prospects. Plant Breeding Abstract, 65:1438–1447.
  • Lawlor, D.W. (2002). Limitation of photosynthesis in water stressed leaves: Stomata vs. metabolism and the role of ATP. Annals of Botany, 89:871-885.
  • Liu, P., & Yang, Y.A. (2000). Effects of molybdenum and boron on membrane lipid peroxidation and endogenous protective systems of soybean leaves. Acta Botanica Sinica, 42 461–466.
  • Lovatt, C.J., & Bates, L. (1984). Early effects of excess boron on photosynthesis and growth of Cucurbita pepo. Journal of Experimental Botany, 35:297-305.
  • Marschner, H. (1995). Mineral Nutrition of Higher Plants, Academic Press, New York.
  • Metwally, A.M., Radi, A.A., El-Shazoly, R.M., & Hamada, A.M. (2018). The role of calcium, silicon and salicylic acid treatment in protection of canola plants against boron toxicity stress. Journal of Plant Research, 131:1015-1028.
  • Mourato, M.P., Moreira, I.N., Leitão, I., Pinto, F.R., Sales J.R., & Martins, L.L. (2015). Effect of heavy metals in plants of the genus Brassica. International Journal of Molecular Sciences, 16:17975-17998.
  • Nable, R.O., Banuelos, G.S., & Paul, J.G. (1997). Boron toxicity. Plant and Soil, 193:181-198.
  • Palta, Ç., & Gezgin, S. (2011). Tolerance to boron toxicity of maize (Zea mays L.) cultivars widely cultivated in Central Anatolian Region. Selcuk Journal of Agriculture and Food Sciences, 25:1-8 (in Turkish).
  • Papadakis, I.E., Dimassi, K.N., Bosabalidis, A.M., Therios, I. N., Patakas, A., & Giannakoula. A. (2004a). Boron toxicity in ‘Clementine’ mandarin plants grafted on two rootstocks. Plant Science, 166(2):539–547.
  • Papadakis, I., Dimassi, K.N., Bosabalidis, A.M., Therios, I.N. & Patakas, A. (2004b). Effects of B excess on some physiological and anatomical parameters of ‘Navelina’ orange plants grafted on two rootstocks. Environmental and Experimental Botany, 51:247-257.
  • Paz-Alberto, A.M., & Sigua, G.C. (2013). Phytoremediation: A green technology to remove environmental pollutants. American Journal of Climate Change, 2: 71-86.
  • Ramila, C.D.P., Leiva, E.D., Bonilla, C.A., Pasten, P.A., & Pizarro, G.E. (2015). Boron accumulation in Puccinellia frigida, an extremely tolerant and promising species for boron phytoremediation. Journal of Geochemical Exploration, 150:25-34.
  • Ramila, C.D.P, Contreras, S.A., Di Domenica, C., Molina-Montenegro, M.A., Vega, A., Handford, M., Bonilla, C.A., & Pizarro, G.E. (2016). Boron stress response and accumulation potential of the extremely tolerant species Puccinellia frigida. Journal of Hazardous Materials, 317:476-484.
  • Reid, R.J., Hayes, J.E., Post, A., Strangoulis, J.C.R., & Graham, R.D. (2004). A critical analysis of the causes of boron toxicity in plants. Plant Cell and Environment, 27:1405–1414.
  • Rucinska-Sobkowiak, R. (2016). Water relations in plants subjected to heavy metal stresses. Acta Physiologiae Plantarum 38:1-13.
  • Samet, H., & Çıkılı, Y. (2016). Response of purslane (Portulaca oleracea L.) to boron toxicity. Anadolu Journal of Agricultural Sciences, 31:448-455.
  • Samet, H., & Çıkılı, Y. (2019). Response of purslane (Portulaca oleracea L.) to excess boron and salinity: Physiological approach. Russian Journal of Plant Physiology, 66:316–325.
  • Schnurbusch, T. Hayes, J., & Sutton, T. (2010). Boron toxicity tolerance in wheat and barley: Australian perspectives. Breeding Science, 60:297-304.
  • Shah, F.R., Ahmad, N., Masood, K.R., Peralta-Viden, J.R., & Ahmad, F.D. (2010). Heavy metal toxicity in plants (Chapter 4). pp:71-97. In: Ashraf, M. Ozturk, M. & Ahmad, M.S.A. (eds.), Plant Adaptation and Phytoremediation, Springer Science+Business Media, New York.
  • Simon, I., Diaz-Lopez, L., Gimeno, V., Nieves, M., Pereira, W.E., Martinez, V., Lidon, V., & Garcia-Sanchez, F. (2013). Effects of boron excess in nutrient solution on growth, mineral nutrition and physiological parameters of Jatropha curcas seedlings. Journal of Plant Nutrition and Soil Science, 176:165-174.
  • Uygan, S. (2014). Determination of the reactions of wild wheat (Triticum boeticum L.) against different boron applications via physiological and molecular methods. MSc Thesis, Selçuk University, Konya (In Turkish).
  • Varshney, P., Fariduddin, Q., & Yusuf, M. (2015). Boron induced modulation in growth, photosynthesis and antioxidant system in two varieties of Brassica juncea. International Journal of Advanced Research, 3:819-832.
  • Yau, S.K., & Ryan, J. (2008). Boron toxicity tolerance in crops: A viable alternative to soil amelioration. Crop Science, 48:854–865.
  • Yazıcı, D., & Korkmaz, K. (2020). The effect of potassium applications on toxicity and uptake of boron in buckwheat. Academic Journal of Agriculture, 9:151-162.
Year 2021, Volume: 38 Issue: 1, 29 - 38, 01.06.2021
https://doi.org/10.16882/hortis.867761

Abstract

References

  • Akıncı, İ.E. (2006). Effect of boron toxicity on yield and plant characteristics in red pepper (Capsicum annuum L.). VI. Vegetables Farming Symposium, 19-22 Eylül 2006; Kahramanmaraş/ Türkiye, p:290-295. (In Turkish).
  • Akoğlu, A. (2013). The response of some common bean (Phaseolus vulgaris L.) genotypes to boron applications. M.Sc Thesis, Eskişehir Osmangazi University, Eskişehir, (in Turkish).
  • Alaboudia, K.A., Ahmeda, B., & Brodie, G. (2018). Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant. Annals of Agricultural Sciences, 63:123–127.
  • Ali, H., Khan, E., & Sajad, M.A. (2013). Phytoremediation of heavy metals – Concepts and applications. Chemosphere, 91:869-881.
  • Ayvaz, M. (2009). Effects of excess boron on enzyme activity changes, protein and auxin contents of potatoes (Solanum tuberosum L.). PhD Thesis, Ege University, İzmir, (in Turkish).
  • Brdar-Jokanovic, M. (2020). Boron toxicity and deficiency in agricultural plants. International Journal of Molecular Sciences, 21:1424.
  • Chapman, V.J., Edwards, D.G., Blamey, F.P.C., & Asher, C.J. (1997). Challenging the dogma of a narrow supply range between deficiency and toxicity of boron. pp. 151-155. In: Bell R.W., Rerkasem B. (eds) Boron in Soils and Plants. Developments in Plant and Soil Sciences Kluwer Academic Publishers, Dordrecht.
  • de Abreu, C.A., van Raij, B., de Abreu, M.F., & González, A.P. (2005). Routine soil testing to monitor heavy metals and boron. Scientia Agricola, 62:564–571.
  • Dhanda, S., & Sethi, G. (1998). Inheritance of excised-leaf water loss and relative water content in bread wheat (Triticum aestivum). Euphytica, 104:39–47.
  • Eraslan, F., Inal, A., Gunes, A., & Alpaslan, M. (2007). Boron toxicity alters nitrate reductase activity, proline accumulation, membrane permeability, and mineral constituents of tomato and pepper plants. Journal of Plant Nutrition, 30:981-994.
  • Erdal, Ş. (2016). Determination of selection criteria associated with grain yield under normal and drought stress conditions in maize. Derim, 33:131-143 (in Turkish).
  • Gall, J.E., & Rajakarun, N. (2013). The physiology, functional genomics, and applied ecology of heavy metal-tolerant Brassicaceae. pp. 121-148. In: Lang, M. (ed.), Brassicaceae: Characterization, Functional Genomics and Health Benefits (Ed. Minglin Lang), Nova Science Publishers, Inc., NY, USA.
  • García-Sáncheza, F., Simón-Graoa, S., Martínez-Nicolásb, J.J., Alfosea-Simóna, M., Liuc, C., Chatzissavvidisd, C., Pérez-Péreze, J.G., & Cámara-Zapatab, J.M. (2020). Multiple stresses occurring with boron toxicity and deficiency in plants. Journal of Hazardous Materials, 397:122713.
  • Gence, C.Ç. (2015). Determination of resistance of Triticum spelta to boron toxicity. MSc Thesis, Gaziosmanpaşa University, Tokat (in Turkish).
  • Goldberg, S. (1997). Reactions of bor with soils. Plant and Soil, 193:35-48.
  • Güneş, A, Alpaslan, M. Özcan, H., & Çıkılı, Y. (2000a). Tolerance to boron toxicity of maize (Zea mays L.) cultivars widely cultivated in Turkey. Turkish Journal of Agriculture and Forestry, 24:277-282 (in Turkish).
  • Güneş, A., Alpaslan, M., Çikili, Y., & Özcan, H. (2000b). Effect of zinc on the alleviation of boron toxicity in tomato. Journal of Plant Nutrition, 22:1061-1068.
  • Güneş, A., Soylemezoğlu G., Inal A., Bagci E.G., Coban S., & Sahin O. (2006). Antioxidant and stomatal responses of grapevine (Vitis vinifera L.) to boron toxicity. Scientia Horticulturae, 110:279-284.
  • Harite, Ü. (2008). Boron toxicity in cotton. MSc Thesis, Adnan Menderes University, Aydın (in Turkish).
  • Hasnain, A., Mahmood, S., Akhtar, S., Malik, S.A., & Bashir, N. (2011). Tolerance and toxicity levels of boron in mung bean (Vigna radiata (L.) Wilczek) cultivars at early growth stages. Pakistan Journal of Botany, 43:1119-1125.
  • Kacar, B., & İnal, A. (2008). Plant Analysis. Nobel Press, No: 1241 (in Turkish).
  • Kacar, B. & Katkat, A.V. (2007). Plant Nutrition. Nobel Press, pp: 536-537, Ankara.
  • Karaömerlioğlu, B. (2011). Research on boron removal from soil using Medicago sativa L. and Vicia sativa L. plants. MSc Thesis, Çukurova University, Adana (in Turkish). Keskin, H. (2010). Determination of the effects of boron toxicity on basic physiological and biochemical characteristics of barley (Hordeum vulgare) varieties and Puccinellia distans. MSc Thesis, Selçuk University, Konya (in Turkish).
  • Khalid, S., Shahid, M., Niazi, N.K., Murtaza, B., Bibi, I., & Dumat, C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 182:247-268.
  • Koohkan, H., & Maftoun, M. (2016). Effect of nitrogen-boron interaction on plant growth and tissue nutrient concentration of canola (Brassica napus L.). Journal of Plant Nutrition, 39:922-931.
  • Kumar, D. (1995). Salt tolerance in oilseed brassicas-present status and future prospects. Plant Breeding Abstract, 65:1438–1447.
  • Lawlor, D.W. (2002). Limitation of photosynthesis in water stressed leaves: Stomata vs. metabolism and the role of ATP. Annals of Botany, 89:871-885.
  • Liu, P., & Yang, Y.A. (2000). Effects of molybdenum and boron on membrane lipid peroxidation and endogenous protective systems of soybean leaves. Acta Botanica Sinica, 42 461–466.
  • Lovatt, C.J., & Bates, L. (1984). Early effects of excess boron on photosynthesis and growth of Cucurbita pepo. Journal of Experimental Botany, 35:297-305.
  • Marschner, H. (1995). Mineral Nutrition of Higher Plants, Academic Press, New York.
  • Metwally, A.M., Radi, A.A., El-Shazoly, R.M., & Hamada, A.M. (2018). The role of calcium, silicon and salicylic acid treatment in protection of canola plants against boron toxicity stress. Journal of Plant Research, 131:1015-1028.
  • Mourato, M.P., Moreira, I.N., Leitão, I., Pinto, F.R., Sales J.R., & Martins, L.L. (2015). Effect of heavy metals in plants of the genus Brassica. International Journal of Molecular Sciences, 16:17975-17998.
  • Nable, R.O., Banuelos, G.S., & Paul, J.G. (1997). Boron toxicity. Plant and Soil, 193:181-198.
  • Palta, Ç., & Gezgin, S. (2011). Tolerance to boron toxicity of maize (Zea mays L.) cultivars widely cultivated in Central Anatolian Region. Selcuk Journal of Agriculture and Food Sciences, 25:1-8 (in Turkish).
  • Papadakis, I.E., Dimassi, K.N., Bosabalidis, A.M., Therios, I. N., Patakas, A., & Giannakoula. A. (2004a). Boron toxicity in ‘Clementine’ mandarin plants grafted on two rootstocks. Plant Science, 166(2):539–547.
  • Papadakis, I., Dimassi, K.N., Bosabalidis, A.M., Therios, I.N. & Patakas, A. (2004b). Effects of B excess on some physiological and anatomical parameters of ‘Navelina’ orange plants grafted on two rootstocks. Environmental and Experimental Botany, 51:247-257.
  • Paz-Alberto, A.M., & Sigua, G.C. (2013). Phytoremediation: A green technology to remove environmental pollutants. American Journal of Climate Change, 2: 71-86.
  • Ramila, C.D.P., Leiva, E.D., Bonilla, C.A., Pasten, P.A., & Pizarro, G.E. (2015). Boron accumulation in Puccinellia frigida, an extremely tolerant and promising species for boron phytoremediation. Journal of Geochemical Exploration, 150:25-34.
  • Ramila, C.D.P, Contreras, S.A., Di Domenica, C., Molina-Montenegro, M.A., Vega, A., Handford, M., Bonilla, C.A., & Pizarro, G.E. (2016). Boron stress response and accumulation potential of the extremely tolerant species Puccinellia frigida. Journal of Hazardous Materials, 317:476-484.
  • Reid, R.J., Hayes, J.E., Post, A., Strangoulis, J.C.R., & Graham, R.D. (2004). A critical analysis of the causes of boron toxicity in plants. Plant Cell and Environment, 27:1405–1414.
  • Rucinska-Sobkowiak, R. (2016). Water relations in plants subjected to heavy metal stresses. Acta Physiologiae Plantarum 38:1-13.
  • Samet, H., & Çıkılı, Y. (2016). Response of purslane (Portulaca oleracea L.) to boron toxicity. Anadolu Journal of Agricultural Sciences, 31:448-455.
  • Samet, H., & Çıkılı, Y. (2019). Response of purslane (Portulaca oleracea L.) to excess boron and salinity: Physiological approach. Russian Journal of Plant Physiology, 66:316–325.
  • Schnurbusch, T. Hayes, J., & Sutton, T. (2010). Boron toxicity tolerance in wheat and barley: Australian perspectives. Breeding Science, 60:297-304.
  • Shah, F.R., Ahmad, N., Masood, K.R., Peralta-Viden, J.R., & Ahmad, F.D. (2010). Heavy metal toxicity in plants (Chapter 4). pp:71-97. In: Ashraf, M. Ozturk, M. & Ahmad, M.S.A. (eds.), Plant Adaptation and Phytoremediation, Springer Science+Business Media, New York.
  • Simon, I., Diaz-Lopez, L., Gimeno, V., Nieves, M., Pereira, W.E., Martinez, V., Lidon, V., & Garcia-Sanchez, F. (2013). Effects of boron excess in nutrient solution on growth, mineral nutrition and physiological parameters of Jatropha curcas seedlings. Journal of Plant Nutrition and Soil Science, 176:165-174.
  • Uygan, S. (2014). Determination of the reactions of wild wheat (Triticum boeticum L.) against different boron applications via physiological and molecular methods. MSc Thesis, Selçuk University, Konya (In Turkish).
  • Varshney, P., Fariduddin, Q., & Yusuf, M. (2015). Boron induced modulation in growth, photosynthesis and antioxidant system in two varieties of Brassica juncea. International Journal of Advanced Research, 3:819-832.
  • Yau, S.K., & Ryan, J. (2008). Boron toxicity tolerance in crops: A viable alternative to soil amelioration. Crop Science, 48:854–865.
  • Yazıcı, D., & Korkmaz, K. (2020). The effect of potassium applications on toxicity and uptake of boron in buckwheat. Academic Journal of Agriculture, 9:151-162.
There are 50 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Araştırma Makalesi
Authors

Şenel Birceyudum Eman Gökseven This is me 0000-0002-4940-8547

Sevinç Kıran This is me 0000-0002-6756-0235

Şeküre Şebnem Ellialtıoğlu This is me 0000-0002-3851-466X

Publication Date June 1, 2021
Published in Issue Year 2021 Volume: 38 Issue: 1

Cite

APA Eman Gökseven, Ş. B., Kıran, S., & Ellialtıoğlu, Ş. Ş. (2021). Determination of Morphological and Physiological Changes of Ornamental Cabbage (Brassica oleracea var. acephala) against Boron Toxicity in Phytoremediation. Horticultural Studies, 38(1), 29-38. https://doi.org/10.16882/hortis.867761
AMA Eman Gökseven ŞB, Kıran S, Ellialtıoğlu ŞŞ. Determination of Morphological and Physiological Changes of Ornamental Cabbage (Brassica oleracea var. acephala) against Boron Toxicity in Phytoremediation. HortiS. June 2021;38(1):29-38. doi:10.16882/hortis.867761
Chicago Eman Gökseven, Şenel Birceyudum, Sevinç Kıran, and Şeküre Şebnem Ellialtıoğlu. “Determination of Morphological and Physiological Changes of Ornamental Cabbage (Brassica Oleracea Var. Acephala) Against Boron Toxicity in Phytoremediation”. Horticultural Studies 38, no. 1 (June 2021): 29-38. https://doi.org/10.16882/hortis.867761.
EndNote Eman Gökseven ŞB, Kıran S, Ellialtıoğlu ŞŞ (June 1, 2021) Determination of Morphological and Physiological Changes of Ornamental Cabbage (Brassica oleracea var. acephala) against Boron Toxicity in Phytoremediation. Horticultural Studies 38 1 29–38.
IEEE Ş. B. Eman Gökseven, S. Kıran, and Ş. Ş. Ellialtıoğlu, “Determination of Morphological and Physiological Changes of Ornamental Cabbage (Brassica oleracea var. acephala) against Boron Toxicity in Phytoremediation”, HortiS, vol. 38, no. 1, pp. 29–38, 2021, doi: 10.16882/hortis.867761.
ISNAD Eman Gökseven, Şenel Birceyudum et al. “Determination of Morphological and Physiological Changes of Ornamental Cabbage (Brassica Oleracea Var. Acephala) Against Boron Toxicity in Phytoremediation”. Horticultural Studies 38/1 (June 2021), 29-38. https://doi.org/10.16882/hortis.867761.
JAMA Eman Gökseven ŞB, Kıran S, Ellialtıoğlu ŞŞ. Determination of Morphological and Physiological Changes of Ornamental Cabbage (Brassica oleracea var. acephala) against Boron Toxicity in Phytoremediation. HortiS. 2021;38:29–38.
MLA Eman Gökseven, Şenel Birceyudum et al. “Determination of Morphological and Physiological Changes of Ornamental Cabbage (Brassica Oleracea Var. Acephala) Against Boron Toxicity in Phytoremediation”. Horticultural Studies, vol. 38, no. 1, 2021, pp. 29-38, doi:10.16882/hortis.867761.
Vancouver Eman Gökseven ŞB, Kıran S, Ellialtıoğlu ŞŞ. Determination of Morphological and Physiological Changes of Ornamental Cabbage (Brassica oleracea var. acephala) against Boron Toxicity in Phytoremediation. HortiS. 2021;38(1):29-38.