Research Article
BibTex RIS Cite
Year 2023, Volume: 5 Issue: 1, 1 - 10, 26.06.2023

Abstract

References

  • Benkartab, A., & Cherif, A.M. (2019). New methods of construction for biharmonic maps. Kyungpook Math. J., 59(1), 135-147.
  • Benkartab, A., & Cherif, A.M. (2020). Deformations of metrics and biharmonic maps. Commun. Math., 28(3), 263-275.
  • Djaa, N. E., & Zagane, A. (2022). Harmonicity of deformed gradient metric. International Journal of Maps in Mathematics, 5(1), 61-77.
  • Djaa, N. E., & Zagane, A. (2022). Some results on the geometry of a non-conformal deformation of a metric. Commun. Korean Math. Soc., 37(3), 865-879.
  • Crasmareanu, M. (1999). Killing Potentials. An. Stiint. Univ. Al. I. Cuza Iasi. Mat.(NS), 45(1), 169-176.
  • Djaa, N.E., Latti, F. & Zagane, A. (2022). Proper biharmonic maps on tangent bundle. arXiv preprint arXiv:2211.06661.
  • Zagane, A. (2020). Geodesics on tangent bundles with horizontal Sasaki gradient metric. Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 40(4), 188-197.
  • Zagane, A. (2021). Harmonic sections of tangent bundles with horizontal Sasaki gradient metric. Hagia Sophia Journal of Geometry, 3(2), 31-40.
  • O’Neil, B. (1983). Semi-Riemannian geometry. Academic Press, New York.

Geometry of Mus-Gradient Metric

Year 2023, Volume: 5 Issue: 1, 1 - 10, 26.06.2023

Abstract

In this paper, we give some properties of Riemannian curvature tensors of Mus-gradient metric .i.e. we characterize the Riemannian curvature, the sectional curvature, the Ricci tensor, the Ricci curvature and the scalar curvature.

References

  • Benkartab, A., & Cherif, A.M. (2019). New methods of construction for biharmonic maps. Kyungpook Math. J., 59(1), 135-147.
  • Benkartab, A., & Cherif, A.M. (2020). Deformations of metrics and biharmonic maps. Commun. Math., 28(3), 263-275.
  • Djaa, N. E., & Zagane, A. (2022). Harmonicity of deformed gradient metric. International Journal of Maps in Mathematics, 5(1), 61-77.
  • Djaa, N. E., & Zagane, A. (2022). Some results on the geometry of a non-conformal deformation of a metric. Commun. Korean Math. Soc., 37(3), 865-879.
  • Crasmareanu, M. (1999). Killing Potentials. An. Stiint. Univ. Al. I. Cuza Iasi. Mat.(NS), 45(1), 169-176.
  • Djaa, N.E., Latti, F. & Zagane, A. (2022). Proper biharmonic maps on tangent bundle. arXiv preprint arXiv:2211.06661.
  • Zagane, A. (2020). Geodesics on tangent bundles with horizontal Sasaki gradient metric. Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 40(4), 188-197.
  • Zagane, A. (2021). Harmonic sections of tangent bundles with horizontal Sasaki gradient metric. Hagia Sophia Journal of Geometry, 3(2), 31-40.
  • O’Neil, B. (1983). Semi-Riemannian geometry. Academic Press, New York.
There are 9 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Abderrahım Zagane 0000-0001-9339-3787

Early Pub Date June 21, 2023
Publication Date June 26, 2023
Published in Issue Year 2023 Volume: 5 Issue: 1

Cite

APA Zagane, A. (2023). Geometry of Mus-Gradient Metric. Hagia Sophia Journal of Geometry, 5(1), 1-10.