Research Article
BibTex RIS Cite
Year 2023, , 23 - 35, 15.02.2023
https://doi.org/10.15672/hujms.1008922

Abstract

References

  • [1] S. Ali and N. A. Dar, On $\ast$-centralizing mappings in rings with involution, Georgian Math. J. 21 (1), 25-28, 2014.
  • [2] S. Ali, A. Fo$\check{s}$ner, Maja Fo$\check{s}$ner and M. S. Khan, On generalized Jordan triple $(\alpha,\beta)^{\ast}$- derivations and related mappings, Mediterr. J. Math., 10, 1657-1668, 2013.
  • [3] M. Ashraf and N. Rehman, On Jordan generalized derivations in rings, Math. J. Okayama Univ. 42, 79, 2000.
  • [4] M. Ashraf, S. Ali and C. Haetinger, On derivations in rings and their applications, The Aligarh Bull. Math. 25 (2), 79-107, 2006.
  • [5] K. I. Beidar, W. S. Martindale III and A. V. Mikhalev, Rings with Generalized Identities, Pure Appl. Math. 196, Marcel Dekker Inc., New York, 1996.
  • [6] H. E. Bell and M. N. Daif, On centrally-extended maps on rings, Beitr. Algebra Geom. 57, 129-136, 2016.
  • [7] M. Bre$\check{s}$ar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (2), 385-394, 1993.
  • [8] M. Bre$\check{s}$ar, Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (2), 525-546, 1993.
  • [9] M. Bre$\check{s}$ar and J. Vukman, Jordan derivations on prime rings, Bull. Austral. Math. Soc. 37, 321-322, 1988.
  • [10] M. Bre$\check{s}$ar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (4), 1003-1006, 1988.
  • [11] M. Bre$\check{s}$ar and J. Vukman, On some additive mappings in rings with involution, Aequationes Math. 38, 178-185, 1989.
  • [12] M. Bre$\check{s}$ar and B. Zalar, On the structure of Jordan $\ast$-derivations, Colloq. Math. 63, 163-171, 1992.
  • [13] N. A. Dar and S. Ali, On the structure of generalized Jordan $\ast$-derivations of prime rings, Commun. Algeb. 49 (4), 1422-1430, 2021.
  • [14] S. F. El-Deken and H. Nabiel, Centrally-extended generalized $\ast$-derivations on rings with involution, Beitr Algebra Geom. 60, 217-224, 2019.
  • [15] S. F. El-Deken and M. M. El-Soufi, On centrally extended reverse and generalized reverse derivations, Indian J. Pure Appl. Math., 51 (3), 1165-1180, 2020.
  • [16] N. Divinsky, On commuting automorphisms of rings, Trans. Royal Soc. Can. Sec. III 3 (49), 19-22, 1955.
  • [17] I. N. Herstein, Rings with involution, University of Chicago Press, Chicago, 1976.
  • [18] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8, 1104- 1119, 1957.
  • [19] C. Lanski, Lie structure in semi-prime rings with involution, Commun. Algeb. 4 (8), 731-746, 1976.
  • [20] T. K. Lee and P. H. Lee, Derivations centralizing symmetric or skew elements, Bull. Inst. Math. Acad. Sini. 14 (3), 249-256, 1986.
  • [21] T. K. Lee and Y. Zhou, Jordan $\ast$-derivations of prime rings, J. Algebra Appl. 13 (4), 1350126 (9 pages), 2014.
  • [22] T. K. Lee, T. L. Wong and Y. Zhou, The structure of Jordan $\ast$-derivations of prime rings, Linear Multi. Algeb. 63 (2), 411-422, 2015.
  • [23] N. Muthana and Z. Alkhmisi, On centrally-extended multiplicative (generalized)-($\alpha,$ $\beta$)-derivations in semiprime rings, Hacettepe J. Math. Stat. 49 (2), 578-585, 2020.
  • [24] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8, 1093-1100, 1957.
  • [25] P. $\check{S}$emrl, On Jordan $\ast$-derivations and an application, Colloq. Math. 59, 241-251, 1990.
  • [26] P. $\check{S}$emrl, Quadratic functionals and Jordan $\ast$-derivations, Stud. Math. 97, 157-165, 1991.
  • [27] B. Zalar, On centralisers of semiprime rings, Comment. Math. Univ. Carolina. 32 (4), 609-614, 1991.

On centrally extended Jordan derivations and related maps in rings

Year 2023, , 23 - 35, 15.02.2023
https://doi.org/10.15672/hujms.1008922

Abstract

Let $R$ be a ring and $Z(R)$ be the center of $R.$ The aim of this paper is to define the notions of centrally extended Jordan derivations and centrally extended Jordan $\ast$-derivations, and to prove some results involving these mappings. Precisely, we prove that if a $2$-torsion free noncommutative prime ring $R$ admits a centrally extended Jordan derivation (resp. centrally extended Jordan $\ast$-derivation) $\delta:R\to R$ such that
\[
[\delta(x),x]\in Z(R)~~(resp.~~[\delta(x),x^{\ast}]\in Z(R))\text{ for all }x\in R,
\]
where $'\ast'$ is an involution on $R,$ then $R$ is an order in a central simple algebra of dimension at most 4 over its center.

References

  • [1] S. Ali and N. A. Dar, On $\ast$-centralizing mappings in rings with involution, Georgian Math. J. 21 (1), 25-28, 2014.
  • [2] S. Ali, A. Fo$\check{s}$ner, Maja Fo$\check{s}$ner and M. S. Khan, On generalized Jordan triple $(\alpha,\beta)^{\ast}$- derivations and related mappings, Mediterr. J. Math., 10, 1657-1668, 2013.
  • [3] M. Ashraf and N. Rehman, On Jordan generalized derivations in rings, Math. J. Okayama Univ. 42, 79, 2000.
  • [4] M. Ashraf, S. Ali and C. Haetinger, On derivations in rings and their applications, The Aligarh Bull. Math. 25 (2), 79-107, 2006.
  • [5] K. I. Beidar, W. S. Martindale III and A. V. Mikhalev, Rings with Generalized Identities, Pure Appl. Math. 196, Marcel Dekker Inc., New York, 1996.
  • [6] H. E. Bell and M. N. Daif, On centrally-extended maps on rings, Beitr. Algebra Geom. 57, 129-136, 2016.
  • [7] M. Bre$\check{s}$ar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (2), 385-394, 1993.
  • [8] M. Bre$\check{s}$ar, Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (2), 525-546, 1993.
  • [9] M. Bre$\check{s}$ar and J. Vukman, Jordan derivations on prime rings, Bull. Austral. Math. Soc. 37, 321-322, 1988.
  • [10] M. Bre$\check{s}$ar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (4), 1003-1006, 1988.
  • [11] M. Bre$\check{s}$ar and J. Vukman, On some additive mappings in rings with involution, Aequationes Math. 38, 178-185, 1989.
  • [12] M. Bre$\check{s}$ar and B. Zalar, On the structure of Jordan $\ast$-derivations, Colloq. Math. 63, 163-171, 1992.
  • [13] N. A. Dar and S. Ali, On the structure of generalized Jordan $\ast$-derivations of prime rings, Commun. Algeb. 49 (4), 1422-1430, 2021.
  • [14] S. F. El-Deken and H. Nabiel, Centrally-extended generalized $\ast$-derivations on rings with involution, Beitr Algebra Geom. 60, 217-224, 2019.
  • [15] S. F. El-Deken and M. M. El-Soufi, On centrally extended reverse and generalized reverse derivations, Indian J. Pure Appl. Math., 51 (3), 1165-1180, 2020.
  • [16] N. Divinsky, On commuting automorphisms of rings, Trans. Royal Soc. Can. Sec. III 3 (49), 19-22, 1955.
  • [17] I. N. Herstein, Rings with involution, University of Chicago Press, Chicago, 1976.
  • [18] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8, 1104- 1119, 1957.
  • [19] C. Lanski, Lie structure in semi-prime rings with involution, Commun. Algeb. 4 (8), 731-746, 1976.
  • [20] T. K. Lee and P. H. Lee, Derivations centralizing symmetric or skew elements, Bull. Inst. Math. Acad. Sini. 14 (3), 249-256, 1986.
  • [21] T. K. Lee and Y. Zhou, Jordan $\ast$-derivations of prime rings, J. Algebra Appl. 13 (4), 1350126 (9 pages), 2014.
  • [22] T. K. Lee, T. L. Wong and Y. Zhou, The structure of Jordan $\ast$-derivations of prime rings, Linear Multi. Algeb. 63 (2), 411-422, 2015.
  • [23] N. Muthana and Z. Alkhmisi, On centrally-extended multiplicative (generalized)-($\alpha,$ $\beta$)-derivations in semiprime rings, Hacettepe J. Math. Stat. 49 (2), 578-585, 2020.
  • [24] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8, 1093-1100, 1957.
  • [25] P. $\check{S}$emrl, On Jordan $\ast$-derivations and an application, Colloq. Math. 59, 241-251, 1990.
  • [26] P. $\check{S}$emrl, Quadratic functionals and Jordan $\ast$-derivations, Stud. Math. 97, 157-165, 1991.
  • [27] B. Zalar, On centralisers of semiprime rings, Comment. Math. Univ. Carolina. 32 (4), 609-614, 1991.
There are 27 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Bharat Bhushan This is me

Gurninder S. Sandhu 0000-0001-8618-6325

Shakir Ali 0000-0001-5162-7522

Deepak Kumar This is me 0000-0002-8653-397X

Publication Date February 15, 2023
Published in Issue Year 2023

Cite

APA Bhushan, B., Sandhu, G. S., Ali, S., Kumar, D. (2023). On centrally extended Jordan derivations and related maps in rings. Hacettepe Journal of Mathematics and Statistics, 52(1), 23-35. https://doi.org/10.15672/hujms.1008922
AMA Bhushan B, Sandhu GS, Ali S, Kumar D. On centrally extended Jordan derivations and related maps in rings. Hacettepe Journal of Mathematics and Statistics. February 2023;52(1):23-35. doi:10.15672/hujms.1008922
Chicago Bhushan, Bharat, Gurninder S. Sandhu, Shakir Ali, and Deepak Kumar. “On Centrally Extended Jordan Derivations and Related Maps in Rings”. Hacettepe Journal of Mathematics and Statistics 52, no. 1 (February 2023): 23-35. https://doi.org/10.15672/hujms.1008922.
EndNote Bhushan B, Sandhu GS, Ali S, Kumar D (February 1, 2023) On centrally extended Jordan derivations and related maps in rings. Hacettepe Journal of Mathematics and Statistics 52 1 23–35.
IEEE B. Bhushan, G. S. Sandhu, S. Ali, and D. Kumar, “On centrally extended Jordan derivations and related maps in rings”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 1, pp. 23–35, 2023, doi: 10.15672/hujms.1008922.
ISNAD Bhushan, Bharat et al. “On Centrally Extended Jordan Derivations and Related Maps in Rings”. Hacettepe Journal of Mathematics and Statistics 52/1 (February 2023), 23-35. https://doi.org/10.15672/hujms.1008922.
JAMA Bhushan B, Sandhu GS, Ali S, Kumar D. On centrally extended Jordan derivations and related maps in rings. Hacettepe Journal of Mathematics and Statistics. 2023;52:23–35.
MLA Bhushan, Bharat et al. “On Centrally Extended Jordan Derivations and Related Maps in Rings”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 1, 2023, pp. 23-35, doi:10.15672/hujms.1008922.
Vancouver Bhushan B, Sandhu GS, Ali S, Kumar D. On centrally extended Jordan derivations and related maps in rings. Hacettepe Journal of Mathematics and Statistics. 2023;52(1):23-35.