BibTex RIS Cite

A Prey Predator Model with Fuzzy Initial Values

Year 2012, Volume: 41 Issue: 3, 387 - 395, 01.03.2012

References

  • Bede, B. and Gal, S. G. Generalizations of the differentiability of fuzzy number valued func- tions with applications to fuzzy differential equation, Fuzzy Sets and Systems 151, 581–599, 2005.
  • Bede, B., Rudas, I. J. and Bencsik, A. L. First order linear fuzzy differential equations under generalized differentiability, Inform. Sci. 177, 1648–1662, 2007.
  • Chalco-Cano, Y. and Rom´an-Flores, H. On the new solution of fuzzy differential equations, Chaos Solitons Fractals 38, 112–119, 2006.
  • Gal, S. G. Approximation theory in fuzzy setting, in: G. A. Anastassiou (Ed.), Handbook of Analytic-Computational Methods in Applied Mathematics (Chapman & Hall/CRC Press, Boca Raton, FL, 2000), 617–666.
  • Kaleva, O. Fuzzy differential equations, Fuzzy Sets and Systems 24, 301–317, 1987.
  • Khastan, A., Bahrami, F. and Ivaz, K. New results on multiple solutions for nth-order fuzzy differential equations under generalized differentiability, boundary value problems 2009, Ar- ticle ID 395714, 2009.
  • Khastan, A. Fuzzy Differential Equations, SciTopics, 2010: Retrieved February 6, 2012, from http://www.scitopics.com/Fuzzy Differential Equations.html.
  • Puri, M. and Ralescu, D. Differential and fuzzy functions, J. Math. Anal. Appl. 91, 552–558, 1983.
  • Wu, C. and Gong, Z. On Henstock integral of fuzzy-number-valued functions I, Fuzzy Sets and Systems 120, 523–532, 2001.

A Prey Predator Model with Fuzzy Initial Values

Year 2012, Volume: 41 Issue: 3, 387 - 395, 01.03.2012

References

  • Bede, B. and Gal, S. G. Generalizations of the differentiability of fuzzy number valued func- tions with applications to fuzzy differential equation, Fuzzy Sets and Systems 151, 581–599, 2005.
  • Bede, B., Rudas, I. J. and Bencsik, A. L. First order linear fuzzy differential equations under generalized differentiability, Inform. Sci. 177, 1648–1662, 2007.
  • Chalco-Cano, Y. and Rom´an-Flores, H. On the new solution of fuzzy differential equations, Chaos Solitons Fractals 38, 112–119, 2006.
  • Gal, S. G. Approximation theory in fuzzy setting, in: G. A. Anastassiou (Ed.), Handbook of Analytic-Computational Methods in Applied Mathematics (Chapman & Hall/CRC Press, Boca Raton, FL, 2000), 617–666.
  • Kaleva, O. Fuzzy differential equations, Fuzzy Sets and Systems 24, 301–317, 1987.
  • Khastan, A., Bahrami, F. and Ivaz, K. New results on multiple solutions for nth-order fuzzy differential equations under generalized differentiability, boundary value problems 2009, Ar- ticle ID 395714, 2009.
  • Khastan, A. Fuzzy Differential Equations, SciTopics, 2010: Retrieved February 6, 2012, from http://www.scitopics.com/Fuzzy Differential Equations.html.
  • Puri, M. and Ralescu, D. Differential and fuzzy functions, J. Math. Anal. Appl. 91, 552–558, 1983.
  • Wu, C. and Gong, Z. On Henstock integral of fuzzy-number-valued functions I, Fuzzy Sets and Systems 120, 523–532, 2001.
There are 9 citations in total.

Details

Primary Language Turkish
Authors

Ömer Akın This is me

Ömer Oruç This is me

Publication Date March 1, 2012
Published in Issue Year 2012 Volume: 41 Issue: 3

Cite

APA Akın, Ö., & Oruç, Ö. (2012). A Prey Predator Model with Fuzzy Initial Values. Hacettepe Journal of Mathematics and Statistics, 41(3), 387-395.
AMA Akın Ö, Oruç Ö. A Prey Predator Model with Fuzzy Initial Values. Hacettepe Journal of Mathematics and Statistics. March 2012;41(3):387-395.
Chicago Akın, Ömer, and Ömer Oruç. “A Prey Predator Model With Fuzzy Initial Values”. Hacettepe Journal of Mathematics and Statistics 41, no. 3 (March 2012): 387-95.
EndNote Akın Ö, Oruç Ö (March 1, 2012) A Prey Predator Model with Fuzzy Initial Values. Hacettepe Journal of Mathematics and Statistics 41 3 387–395.
IEEE Ö. Akın and Ö. Oruç, “A Prey Predator Model with Fuzzy Initial Values”, Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 3, pp. 387–395, 2012.
ISNAD Akın, Ömer - Oruç, Ömer. “A Prey Predator Model With Fuzzy Initial Values”. Hacettepe Journal of Mathematics and Statistics 41/3 (March2012), 387-395.
JAMA Akın Ö, Oruç Ö. A Prey Predator Model with Fuzzy Initial Values. Hacettepe Journal of Mathematics and Statistics. 2012;41:387–395.
MLA Akın, Ömer and Ömer Oruç. “A Prey Predator Model With Fuzzy Initial Values”. Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 3, 2012, pp. 387-95.
Vancouver Akın Ö, Oruç Ö. A Prey Predator Model with Fuzzy Initial Values. Hacettepe Journal of Mathematics and Statistics. 2012;41(3):387-95.