Research Article
BibTex RIS Cite

Differential geometric approach of Betchov-Da Rios soliton equation

Year 2023, , 114 - 125, 15.02.2023
https://doi.org/10.15672/hujms.1052831

Abstract

In the present paper, we investigate differential geometric properties the soliton surface $M$ associated with Betchov-Da Rios equation. Then, we give derivative formulas of Frenet frame of unit speed curve $\Phi=\Phi(s,t)$ for all $t$. Also, we discuss the linear map of Weingarten type in the tangent space of the surface that generates two invariants: $k$ and $h$. Moreover, we obtain the necessary and sufficient conditions for the soliton surface associated with Betchov-Da Rios equation to be a minimal surface. Finally, we examine a soliton surface associated with Betchov-Da Rios equation as an application.

Supporting Institution

National Natural Science

Project Number

12101168

Thanks

This work was funded by the National Natural Science Foundation of China (Grant No. 12101168).

References

  • [1] M. Barros, A. Ferrández and P. Lucas, M.A. Merono, Hopf cylinders, B-scrolls and solitons of the Betchov-Da Rios equation in the 3-dimensional anti-De Sitter space, CR Acad. Sci. Paris, Série I 321, 505-509, 1995.
  • [2] M. Barros, A. Ferrández, P. Lucas and M.A. Merono, Solutions of the Betchov-Da Rios soliton equation: a Lorentzian approach, Journal of Geometry and Physics 31 (2-3), 217-228, 1999.
  • [3] M. Barros, A. Ferrández, P. Lucas and M.A. Merono, Solutions of the Betchov-Da Rios soliton equation in the anti-De Sitter 3-space, New Approaches in Nonlinear Analysis, Hadronic Press, Florida, USA, 1999.
  • [4] Q. Ding and J. Inoguchi, Schrödinger flows, binormal motion for curves and second AKNS-hierarchies, Chaos Solitons and Fractals 21 (3), 669-677, 2004.
  • [5] M. Erdoğdu and M. Özdemir, Geometry of Hasimoto surfaces in Minkowski 3-space, Math. Phys. Anal. Geom. 17 (1), 169-181, 2014.
  • [6] M. Erdoğdu and A. Yavuz, Differential geometric aspects of nonlinear Schrödinger equation, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 (1), 510-521, 2021.
  • [7] G. Ganchev and M. Velichka, On the theory of surfaces in the four-dimensional Euclidean space, Kodai Mathematical Journal 31, 183-198, 2008.
  • [8] H. Hasimoto, A soliton on a vortex filament, J. Fluid. Mech. 51 (3), 477-485, 1972.
  • [9] A. W. Marris and S.L. Passman, Vector fields and flows on developable surfaces, Arch. Ration. Mech. Anal. 32 (1), 29-86, 1969.
  • [10] C. Rogers and W.K. Schief, Intrinsic geometry of the NLS equation and its backlund transformation, Stud. Appl. Math. 101 (3), 267-288, 1998.
  • [11] C. Rogers and W.K. Schief, Backlund and Darboux transformations: Geometry of modern applications in soliton theory, Cambridge University Press, 2002.
  • [12] W.K. Schief and C. Rogers, Binormal motion of curves of constant curvature and torsion. Generation of soliton surfaces, Proc. R. Soc. Lond. A. 455, 3163-3188, 1999.
  • [13] A. Yavuz, Construction of binormal motion and characterization of curves on surface by system of differential equations for position vector, Journal of Science and Arts 4 (57), 1043-1056, 2021.
Year 2023, , 114 - 125, 15.02.2023
https://doi.org/10.15672/hujms.1052831

Abstract

Project Number

12101168

References

  • [1] M. Barros, A. Ferrández and P. Lucas, M.A. Merono, Hopf cylinders, B-scrolls and solitons of the Betchov-Da Rios equation in the 3-dimensional anti-De Sitter space, CR Acad. Sci. Paris, Série I 321, 505-509, 1995.
  • [2] M. Barros, A. Ferrández, P. Lucas and M.A. Merono, Solutions of the Betchov-Da Rios soliton equation: a Lorentzian approach, Journal of Geometry and Physics 31 (2-3), 217-228, 1999.
  • [3] M. Barros, A. Ferrández, P. Lucas and M.A. Merono, Solutions of the Betchov-Da Rios soliton equation in the anti-De Sitter 3-space, New Approaches in Nonlinear Analysis, Hadronic Press, Florida, USA, 1999.
  • [4] Q. Ding and J. Inoguchi, Schrödinger flows, binormal motion for curves and second AKNS-hierarchies, Chaos Solitons and Fractals 21 (3), 669-677, 2004.
  • [5] M. Erdoğdu and M. Özdemir, Geometry of Hasimoto surfaces in Minkowski 3-space, Math. Phys. Anal. Geom. 17 (1), 169-181, 2014.
  • [6] M. Erdoğdu and A. Yavuz, Differential geometric aspects of nonlinear Schrödinger equation, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 (1), 510-521, 2021.
  • [7] G. Ganchev and M. Velichka, On the theory of surfaces in the four-dimensional Euclidean space, Kodai Mathematical Journal 31, 183-198, 2008.
  • [8] H. Hasimoto, A soliton on a vortex filament, J. Fluid. Mech. 51 (3), 477-485, 1972.
  • [9] A. W. Marris and S.L. Passman, Vector fields and flows on developable surfaces, Arch. Ration. Mech. Anal. 32 (1), 29-86, 1969.
  • [10] C. Rogers and W.K. Schief, Intrinsic geometry of the NLS equation and its backlund transformation, Stud. Appl. Math. 101 (3), 267-288, 1998.
  • [11] C. Rogers and W.K. Schief, Backlund and Darboux transformations: Geometry of modern applications in soliton theory, Cambridge University Press, 2002.
  • [12] W.K. Schief and C. Rogers, Binormal motion of curves of constant curvature and torsion. Generation of soliton surfaces, Proc. R. Soc. Lond. A. 455, 3163-3188, 1999.
  • [13] A. Yavuz, Construction of binormal motion and characterization of curves on surface by system of differential equations for position vector, Journal of Science and Arts 4 (57), 1043-1056, 2021.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Yanlin Li This is me 0000-0003-1614-3228

Melek Erdoğdu 0000-0001-9610-6229

Ayşe Yavuz 0000-0002-0469-3786

Project Number 12101168
Publication Date February 15, 2023
Published in Issue Year 2023

Cite

APA Li, Y., Erdoğdu, M., & Yavuz, A. (2023). Differential geometric approach of Betchov-Da Rios soliton equation. Hacettepe Journal of Mathematics and Statistics, 52(1), 114-125. https://doi.org/10.15672/hujms.1052831
AMA Li Y, Erdoğdu M, Yavuz A. Differential geometric approach of Betchov-Da Rios soliton equation. Hacettepe Journal of Mathematics and Statistics. February 2023;52(1):114-125. doi:10.15672/hujms.1052831
Chicago Li, Yanlin, Melek Erdoğdu, and Ayşe Yavuz. “Differential Geometric Approach of Betchov-Da Rios Soliton Equation”. Hacettepe Journal of Mathematics and Statistics 52, no. 1 (February 2023): 114-25. https://doi.org/10.15672/hujms.1052831.
EndNote Li Y, Erdoğdu M, Yavuz A (February 1, 2023) Differential geometric approach of Betchov-Da Rios soliton equation. Hacettepe Journal of Mathematics and Statistics 52 1 114–125.
IEEE Y. Li, M. Erdoğdu, and A. Yavuz, “Differential geometric approach of Betchov-Da Rios soliton equation”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 1, pp. 114–125, 2023, doi: 10.15672/hujms.1052831.
ISNAD Li, Yanlin et al. “Differential Geometric Approach of Betchov-Da Rios Soliton Equation”. Hacettepe Journal of Mathematics and Statistics 52/1 (February 2023), 114-125. https://doi.org/10.15672/hujms.1052831.
JAMA Li Y, Erdoğdu M, Yavuz A. Differential geometric approach of Betchov-Da Rios soliton equation. Hacettepe Journal of Mathematics and Statistics. 2023;52:114–125.
MLA Li, Yanlin et al. “Differential Geometric Approach of Betchov-Da Rios Soliton Equation”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 1, 2023, pp. 114-25, doi:10.15672/hujms.1052831.
Vancouver Li Y, Erdoğdu M, Yavuz A. Differential geometric approach of Betchov-Da Rios soliton equation. Hacettepe Journal of Mathematics and Statistics. 2023;52(1):114-25.

Cited By