Year 2023,
, 163 - 170, 15.02.2023
Ebubekir İnan
,
Mustafa Uçkun
References
- [1] A. Di Concilio, C. Guadagni, J. F. Peters and S. Ramanna, Descriptive Proximities:
Properties and interplay between classical proximities and overlap, Mathematics in
Computer Science 12 (1), 91-106, 2018.
- [2] V. A. Efremovič, Infinitesimal spaces, Doklady Akad. Nauk SSSR (N. S.) (Russian)
76, 341-343, 1951.
- [3] V. A. Efremovič, The geometry of proximity I, Mat. Sb. (N. S.) (Russian) 31 (73),
189-200, 1952.
- [4] T. Husein, Introduction to Topological Groups, W.B. Sauders Company, 1966.
- [5] E. İnan, Approximately semigroups and ideals: An algebraic view of digital images,
Afyon Kocatepe University Journal of Science and Engineering 17, 479-487, 2017.
- [6] E. İnan, Approximately subgroups in proximal relator spaces, Adıyaman University
Journal of Science 8 (1), 24-41, 2018.
- [7] E. İnan, Approximately groups in proximal relator spaces, Commun. Fac. Sci. Univ.
Ank. Ser. A1 Math. Stat. 68 (1), 572-582, 2019.
- [8] E. İnan, Approximately rings in proximal relator spaces, Turkish J. Math. 43, 2941-
2953, 2019.
- [9] E. İnan and M. Uçkun, Approximately $\Gamma$-semigroups in proximal relator spaces, Appl.
Algebra Eng. Commun. Comput. 30 (4), 299-311, 2019.
- [10] M. Kovăr, A new causal topology and why the universe is co-compact, arXiv:
1112.0817 [math-ph], 1-15, 2011.
- [11] S. A. Naimpally and J. F. Peters, Topology with Applications: Topological Spaces via
Near and Far, World Scientific, 2013.
- [12] S. A. Naimpally and B. D. Warrack, Proximity Spaces, Cambridge University Press,
1970.
- [13] J. F. Peters and S. A. Naimpally, Applications of near sets, Notices Amer. Math. Soc.
59 (4), 536-542, 2012.
- [14] M. Uçkun, Approximately $\Gamma$-rings in proximal relator spaces, Commun. Fac. Sci. Univ.
Ank. Ser. A1 Math. Stat. 68 (2), 1780-1796, 2019.
Semitopological $\delta$-groups
Year 2023,
, 163 - 170, 15.02.2023
Ebubekir İnan
,
Mustafa Uçkun
Abstract
The aim of this paper is to introduce semitopological $\delta$-group and topological $\delta$-group with the concept of $\delta$-group which arise from approximately algebraic structures. Furthermore, it is shown that product space determined with $\delta$-topological subspaces is a $\delta$-topological space. Fundamental system of open $\delta$-neighborhoods and related properties were investigated.
References
- [1] A. Di Concilio, C. Guadagni, J. F. Peters and S. Ramanna, Descriptive Proximities:
Properties and interplay between classical proximities and overlap, Mathematics in
Computer Science 12 (1), 91-106, 2018.
- [2] V. A. Efremovič, Infinitesimal spaces, Doklady Akad. Nauk SSSR (N. S.) (Russian)
76, 341-343, 1951.
- [3] V. A. Efremovič, The geometry of proximity I, Mat. Sb. (N. S.) (Russian) 31 (73),
189-200, 1952.
- [4] T. Husein, Introduction to Topological Groups, W.B. Sauders Company, 1966.
- [5] E. İnan, Approximately semigroups and ideals: An algebraic view of digital images,
Afyon Kocatepe University Journal of Science and Engineering 17, 479-487, 2017.
- [6] E. İnan, Approximately subgroups in proximal relator spaces, Adıyaman University
Journal of Science 8 (1), 24-41, 2018.
- [7] E. İnan, Approximately groups in proximal relator spaces, Commun. Fac. Sci. Univ.
Ank. Ser. A1 Math. Stat. 68 (1), 572-582, 2019.
- [8] E. İnan, Approximately rings in proximal relator spaces, Turkish J. Math. 43, 2941-
2953, 2019.
- [9] E. İnan and M. Uçkun, Approximately $\Gamma$-semigroups in proximal relator spaces, Appl.
Algebra Eng. Commun. Comput. 30 (4), 299-311, 2019.
- [10] M. Kovăr, A new causal topology and why the universe is co-compact, arXiv:
1112.0817 [math-ph], 1-15, 2011.
- [11] S. A. Naimpally and J. F. Peters, Topology with Applications: Topological Spaces via
Near and Far, World Scientific, 2013.
- [12] S. A. Naimpally and B. D. Warrack, Proximity Spaces, Cambridge University Press,
1970.
- [13] J. F. Peters and S. A. Naimpally, Applications of near sets, Notices Amer. Math. Soc.
59 (4), 536-542, 2012.
- [14] M. Uçkun, Approximately $\Gamma$-rings in proximal relator spaces, Commun. Fac. Sci. Univ.
Ank. Ser. A1 Math. Stat. 68 (2), 1780-1796, 2019.