Research Article
BibTex RIS Cite
Year 2023, , 420 - 425, 31.03.2023
https://doi.org/10.15672/hujms.1114323

Abstract

Project Number

No. 12071181

References

  • [1] R.K. Agrawal, Finite groups whose subnormal subgroups permute with all Sylow subgroups, Proc. Amer. Math. Soc. 47 (1), 77–83, 1975.
  • [2] A. Beltrán, On powers of conjugacy classes in a finite group, J. Group Theory 25 (5), 965–971, 2022.
  • [3] A. Beltrán and M.J. Felipe, Cosets of normal subgroups and powers of conjugacy classes, Math. Nachr. 294, 1652–1656, 2021.
  • [4] J.D. Dixon and B. Mortimer, Permutation Groups, Springer-Verlag, New York, 1996.
  • [5] B. Huppert, Endliche Gruppen, Springer-Verlag, Berlin, Heidelberg, New York, 1967.
  • [6] Q. Jiang and C. Shao, Primary and biprimary class sizes implying nilpotency of finite groups, Turkish J. Math. 40 (2), 389–396, 2016.
  • [7] O.H. Kegel, Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z. 78, 205–221, 1962.
  • [8] S. Li, Z. Shen, J. Liu and X. Liu, The influence of SS-quasinormality of some subgroups on the structure of finite groups, J. Algebra 319, 4275–4287, 2008.
  • [9] D.J.S. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York, 1996.
  • [10] C. Shao and Q. Jiang, Finite groups with three conjugacy class sizes of primary and biprimary elements, Turkish J. Math. 39 (3), 346–355, 2015.
  • [11] S. Srinivasan, Two sufficient conditions for supersolvability of finite groups, Israel J. Math. 35, 210–214, 1980.
  • [12] J.G. Thompson, Normal p-complements for finite groups, Math. Z. 72, 332–354, 1959/1960.
  • [13] J.G. Thompson, Normal p-complements for finite groups, J. Algebra 1, 43–46, 1964.
  • [14] J.G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74, 383–437, 1968.

A constructive approach: From local subgroups to new classes of finite groups

Year 2023, , 420 - 425, 31.03.2023
https://doi.org/10.15672/hujms.1114323

Abstract

Let G be a finite group and S be a proper subgroup of G. A group G is called an S-(S-quasinormal)-group if every local subgroup of G is either an S-quasinormal subgroup or conjugate to a subgroup of S. The main purpose of this construction is to demonstrate a new way of analyzing the structure of a finite group by the properties and the number of conjugacy classes of its local subgroups.

Supporting Institution

Natural Science Foundation of China

Project Number

No. 12071181

References

  • [1] R.K. Agrawal, Finite groups whose subnormal subgroups permute with all Sylow subgroups, Proc. Amer. Math. Soc. 47 (1), 77–83, 1975.
  • [2] A. Beltrán, On powers of conjugacy classes in a finite group, J. Group Theory 25 (5), 965–971, 2022.
  • [3] A. Beltrán and M.J. Felipe, Cosets of normal subgroups and powers of conjugacy classes, Math. Nachr. 294, 1652–1656, 2021.
  • [4] J.D. Dixon and B. Mortimer, Permutation Groups, Springer-Verlag, New York, 1996.
  • [5] B. Huppert, Endliche Gruppen, Springer-Verlag, Berlin, Heidelberg, New York, 1967.
  • [6] Q. Jiang and C. Shao, Primary and biprimary class sizes implying nilpotency of finite groups, Turkish J. Math. 40 (2), 389–396, 2016.
  • [7] O.H. Kegel, Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z. 78, 205–221, 1962.
  • [8] S. Li, Z. Shen, J. Liu and X. Liu, The influence of SS-quasinormality of some subgroups on the structure of finite groups, J. Algebra 319, 4275–4287, 2008.
  • [9] D.J.S. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York, 1996.
  • [10] C. Shao and Q. Jiang, Finite groups with three conjugacy class sizes of primary and biprimary elements, Turkish J. Math. 39 (3), 346–355, 2015.
  • [11] S. Srinivasan, Two sufficient conditions for supersolvability of finite groups, Israel J. Math. 35, 210–214, 1980.
  • [12] J.G. Thompson, Normal p-complements for finite groups, Math. Z. 72, 332–354, 1959/1960.
  • [13] J.G. Thompson, Normal p-complements for finite groups, J. Algebra 1, 43–46, 1964.
  • [14] J.G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74, 383–437, 1968.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Zhencai Shen 0000-0001-5423-4126

Baoyu Zhang 0000-0001-7716-8547

Haonan Jıang 0000-0002-6457-6020

Project Number No. 12071181
Publication Date March 31, 2023
Published in Issue Year 2023

Cite

APA Shen, Z., Zhang, B., & Jıang, H. (2023). A constructive approach: From local subgroups to new classes of finite groups. Hacettepe Journal of Mathematics and Statistics, 52(2), 420-425. https://doi.org/10.15672/hujms.1114323
AMA Shen Z, Zhang B, Jıang H. A constructive approach: From local subgroups to new classes of finite groups. Hacettepe Journal of Mathematics and Statistics. March 2023;52(2):420-425. doi:10.15672/hujms.1114323
Chicago Shen, Zhencai, Baoyu Zhang, and Haonan Jıang. “A Constructive Approach: From Local Subgroups to New Classes of Finite Groups”. Hacettepe Journal of Mathematics and Statistics 52, no. 2 (March 2023): 420-25. https://doi.org/10.15672/hujms.1114323.
EndNote Shen Z, Zhang B, Jıang H (March 1, 2023) A constructive approach: From local subgroups to new classes of finite groups. Hacettepe Journal of Mathematics and Statistics 52 2 420–425.
IEEE Z. Shen, B. Zhang, and H. Jıang, “A constructive approach: From local subgroups to new classes of finite groups”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 2, pp. 420–425, 2023, doi: 10.15672/hujms.1114323.
ISNAD Shen, Zhencai et al. “A Constructive Approach: From Local Subgroups to New Classes of Finite Groups”. Hacettepe Journal of Mathematics and Statistics 52/2 (March 2023), 420-425. https://doi.org/10.15672/hujms.1114323.
JAMA Shen Z, Zhang B, Jıang H. A constructive approach: From local subgroups to new classes of finite groups. Hacettepe Journal of Mathematics and Statistics. 2023;52:420–425.
MLA Shen, Zhencai et al. “A Constructive Approach: From Local Subgroups to New Classes of Finite Groups”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 2, 2023, pp. 420-5, doi:10.15672/hujms.1114323.
Vancouver Shen Z, Zhang B, Jıang H. A constructive approach: From local subgroups to new classes of finite groups. Hacettepe Journal of Mathematics and Statistics. 2023;52(2):420-5.