Research Article
BibTex RIS Cite
Year 2023, , 1046 - 1065, 15.08.2023
https://doi.org/10.15672/hujms.1122207

Abstract

References

  • [1] M.R. Abonazel, Z.Y. Algamal, F.A. Awwad and I.M. Taha, A new two-parameter estimator for beta regression model: method, simulation, and application, Front. Appl. Math. Stat. 7, 780322, 1-10, 2022.
  • [2] M.R. Abonazel, I. Dawoud, F.A. Awwad and A.F. Lukman, Dawoud-Kibria estimator for beta regression model: simulation and application, Front. Appl. Math. Stat. 8, 775068, 1-12, 2022.
  • [3] M.R. Abonazel and I.M. Taha, Beta ridge regression estimators: simulation and application, Comm. Statist. Simulation Comput., Doi: 10.1080/03610918.2021.1960373, 2021.
  • [4] S.E. Ahmed, Penalty, Shrinkage and Pretest Strategies: Variable Selection and Estimation, Springer, 2014.
  • [5] M.N. Akram, M. Amin, A. Elhassanein and M. Aman Ullah, A new modified ridgetype estimator for the beta regression model: simulation and application, AIMS Math. 7 (1), 1035-1057, 2021.
  • [6] Z.Y. Algamal, A particle swarm optimization method for variable selection in beta regression model, Electron. J. Appl. Stat. Anal. 12 (2), 508-519, 2019.
  • [7] Z.Y. Algamal and M.R. Abonazel, Developing a Liu-type estimator in beta regression model, Concurr. Comput. Pract. Exp. 34 (5), 1-11, 2021.
  • [8] M. Arashi, Preliminary test and Stein estimations in simultaneous linear equations, Linear Algebra Appl. 436 (5), 1195-1211, 2012.
  • [9] T.A. Bancroft, On biases in estimation due to the use of preliminary tests of significance, Ann. Math. Stat. 15 (2), 190204, 1944.
  • [10] P.L. Espinheira, S.L.P. Ferrari and F. Cribari-Neto, Influence diagnostics in beta regression, Comput. Statist. Data Anal. 52 (9), 4417-4431, 2008.
  • [11] P.L. Espinheira, S.L.P. Ferrari and F. Cribari-Neto, On beta regression residuals, J. Appl. Stat. 35 (4), 407-419, 2008.
  • [12] L. Fahrmeir and H. Kaufmann, Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models, Ann. Statist. 13 (1), 342-368, 1985.
  • [13] S. Ferrari and F. Cribari-Neto, Beta regression for modeling rates and proportions, J. Appl. Stat. 31 (7), 799-815, 2004.
  • [14] S.L.P. Ferrari and E.C. Pinheiro, Improved likelihood inference in beta regression, J. Stat. Comput. Simul. 81 (4), 431-443, 2011.
  • [15] D. Fourdrinier, W.E. Strawderman and M.T. Wells, Shrinkage Estimation, Springer International Publishing, 2018.
  • [16] G.G. Judge and M.E. Bock, The Statistical Implications of Pre-test and Stein-rule Estimators in Econometrics, North Holland Publishing Company, 1978.
  • [17] P. Karlsson, K. Månsson and B.M.G. Kibria, A Liu estimator for the beta regression model and its application to chemical data, J. Chemom. 34 (10), 1-16, 2020.
  • [18] M. Qasim, K. Månsson and B.M.G. Kibria, On some beta Ridge regression estimators: method,simulation and application, J. Stat. Comput. Simul. 91 (9), 1699-1712, 2021.
  • [19] S.W. Mahmood, N.N. Seyala and Z.Y. Algamal, Adjusted R2-type measures for beta regression model, Electron. J. Appl. Stat. Anal. 13 (2), 350-357, 2020.
  • [20] E. Saleh, Theory of Preliminary Test and Stein-Type Estimation with Applications, John Wiley and Sons, 2006.
  • [21] A.B. Simas, W. Barreto-Souza and A.V. Rocha, Improved estimators for a general class of beta regression models, Comput. Statist. Data Anal. 54 (2), 348-366, 2010.
  • [22] M. Smithson and J. Verkuilen, A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables, Psychol. Methods 11 (1), 54-71, 2006.
  • [23] H. Unlua and S. Aktasb, Beta regression for the indicator values of well-being index for provinces in Turkey, Res. J. Appl. Sci. Eng. Technol. 2 (2), 101-111, 2017.

James-Stein type estimators in beta regression model: simulation and application

Year 2023, , 1046 - 1065, 15.08.2023
https://doi.org/10.15672/hujms.1122207

Abstract

Recently, the beta regression model has been used in several fields of science to model data in the form of rate or proportion. In this paper, some novel and improved methods to estimate parameters in the beta regression model are proposed. We consider a sub-space on the regression coefficients of the beta regression model and combine the unrestricted and restricted estimators then we present Stein-type and preliminary estimators. We develop the expressions for the proposed estimators' asymptotic biases and their quadratic risks. Numerical studies through Monte Carlo simulations are used to evaluate the performance of the proposed estimators in terms of their simulated relative efficiency. The results show that the proposed estimators outperform the unrestricted estimator when the restrictions hold. Finally, an empirical application is given to show how useful the proposed estimators are in the practical area.

References

  • [1] M.R. Abonazel, Z.Y. Algamal, F.A. Awwad and I.M. Taha, A new two-parameter estimator for beta regression model: method, simulation, and application, Front. Appl. Math. Stat. 7, 780322, 1-10, 2022.
  • [2] M.R. Abonazel, I. Dawoud, F.A. Awwad and A.F. Lukman, Dawoud-Kibria estimator for beta regression model: simulation and application, Front. Appl. Math. Stat. 8, 775068, 1-12, 2022.
  • [3] M.R. Abonazel and I.M. Taha, Beta ridge regression estimators: simulation and application, Comm. Statist. Simulation Comput., Doi: 10.1080/03610918.2021.1960373, 2021.
  • [4] S.E. Ahmed, Penalty, Shrinkage and Pretest Strategies: Variable Selection and Estimation, Springer, 2014.
  • [5] M.N. Akram, M. Amin, A. Elhassanein and M. Aman Ullah, A new modified ridgetype estimator for the beta regression model: simulation and application, AIMS Math. 7 (1), 1035-1057, 2021.
  • [6] Z.Y. Algamal, A particle swarm optimization method for variable selection in beta regression model, Electron. J. Appl. Stat. Anal. 12 (2), 508-519, 2019.
  • [7] Z.Y. Algamal and M.R. Abonazel, Developing a Liu-type estimator in beta regression model, Concurr. Comput. Pract. Exp. 34 (5), 1-11, 2021.
  • [8] M. Arashi, Preliminary test and Stein estimations in simultaneous linear equations, Linear Algebra Appl. 436 (5), 1195-1211, 2012.
  • [9] T.A. Bancroft, On biases in estimation due to the use of preliminary tests of significance, Ann. Math. Stat. 15 (2), 190204, 1944.
  • [10] P.L. Espinheira, S.L.P. Ferrari and F. Cribari-Neto, Influence diagnostics in beta regression, Comput. Statist. Data Anal. 52 (9), 4417-4431, 2008.
  • [11] P.L. Espinheira, S.L.P. Ferrari and F. Cribari-Neto, On beta regression residuals, J. Appl. Stat. 35 (4), 407-419, 2008.
  • [12] L. Fahrmeir and H. Kaufmann, Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models, Ann. Statist. 13 (1), 342-368, 1985.
  • [13] S. Ferrari and F. Cribari-Neto, Beta regression for modeling rates and proportions, J. Appl. Stat. 31 (7), 799-815, 2004.
  • [14] S.L.P. Ferrari and E.C. Pinheiro, Improved likelihood inference in beta regression, J. Stat. Comput. Simul. 81 (4), 431-443, 2011.
  • [15] D. Fourdrinier, W.E. Strawderman and M.T. Wells, Shrinkage Estimation, Springer International Publishing, 2018.
  • [16] G.G. Judge and M.E. Bock, The Statistical Implications of Pre-test and Stein-rule Estimators in Econometrics, North Holland Publishing Company, 1978.
  • [17] P. Karlsson, K. Månsson and B.M.G. Kibria, A Liu estimator for the beta regression model and its application to chemical data, J. Chemom. 34 (10), 1-16, 2020.
  • [18] M. Qasim, K. Månsson and B.M.G. Kibria, On some beta Ridge regression estimators: method,simulation and application, J. Stat. Comput. Simul. 91 (9), 1699-1712, 2021.
  • [19] S.W. Mahmood, N.N. Seyala and Z.Y. Algamal, Adjusted R2-type measures for beta regression model, Electron. J. Appl. Stat. Anal. 13 (2), 350-357, 2020.
  • [20] E. Saleh, Theory of Preliminary Test and Stein-Type Estimation with Applications, John Wiley and Sons, 2006.
  • [21] A.B. Simas, W. Barreto-Souza and A.V. Rocha, Improved estimators for a general class of beta regression models, Comput. Statist. Data Anal. 54 (2), 348-366, 2010.
  • [22] M. Smithson and J. Verkuilen, A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables, Psychol. Methods 11 (1), 54-71, 2006.
  • [23] H. Unlua and S. Aktasb, Beta regression for the indicator values of well-being index for provinces in Turkey, Res. J. Appl. Sci. Eng. Technol. 2 (2), 101-111, 2017.
There are 23 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Statistics
Authors

Solmaz Seifollahi 0000-0002-7866-0653

Hossein Bevrani‎ 0000-0003-4658-9095

Publication Date August 15, 2023
Published in Issue Year 2023

Cite

APA Seifollahi, S., & Bevrani‎, H. (2023). James-Stein type estimators in beta regression model: simulation and application. Hacettepe Journal of Mathematics and Statistics, 52(4), 1046-1065. https://doi.org/10.15672/hujms.1122207
AMA Seifollahi S, Bevrani‎ H. James-Stein type estimators in beta regression model: simulation and application. Hacettepe Journal of Mathematics and Statistics. August 2023;52(4):1046-1065. doi:10.15672/hujms.1122207
Chicago Seifollahi, Solmaz, and Hossein Bevrani‎. “James-Stein Type Estimators in Beta Regression Model: Simulation and Application”. Hacettepe Journal of Mathematics and Statistics 52, no. 4 (August 2023): 1046-65. https://doi.org/10.15672/hujms.1122207.
EndNote Seifollahi S, Bevrani‎ H (August 1, 2023) James-Stein type estimators in beta regression model: simulation and application. Hacettepe Journal of Mathematics and Statistics 52 4 1046–1065.
IEEE S. Seifollahi and H. Bevrani‎, “James-Stein type estimators in beta regression model: simulation and application”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 4, pp. 1046–1065, 2023, doi: 10.15672/hujms.1122207.
ISNAD Seifollahi, Solmaz - Bevrani‎, Hossein. “James-Stein Type Estimators in Beta Regression Model: Simulation and Application”. Hacettepe Journal of Mathematics and Statistics 52/4 (August 2023), 1046-1065. https://doi.org/10.15672/hujms.1122207.
JAMA Seifollahi S, Bevrani‎ H. James-Stein type estimators in beta regression model: simulation and application. Hacettepe Journal of Mathematics and Statistics. 2023;52:1046–1065.
MLA Seifollahi, Solmaz and Hossein Bevrani‎. “James-Stein Type Estimators in Beta Regression Model: Simulation and Application”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 4, 2023, pp. 1046-65, doi:10.15672/hujms.1122207.
Vancouver Seifollahi S, Bevrani‎ H. James-Stein type estimators in beta regression model: simulation and application. Hacettepe Journal of Mathematics and Statistics. 2023;52(4):1046-65.