Research Article
BibTex RIS Cite
Year 2023, , 652 - 672, 30.05.2023
https://doi.org/10.15672/hujms.1137425

Abstract

References

  • [1] J. Freudenberger, F. Ghaboussi and S. Shavgulidze, New coding techniques for codes over Gaussian integers, IEEE Transactions on Communications 61 (8), 3114-3124, 2013.
  • [2] J. Freudenberger and S. Shavgulidze, New four-dimensional signal constellations from Lipschitz integers for transmission over the Gaussian channel, IEEE Transactions on Communications 63 (7), 2420-2427, 2015.
  • [3] K. Huber, Codes over Gaussian integers, IEEE Trans. Inform. Theory 40 (1), 207-216, 1994.
  • [4] K. Huber, Codes over Eisenstein-Jacobi integers, Finite fields: theory, applications, and algorithms 168, 165179, 1994.
  • [5] M. Güzeltepe, Codes over Hurwitz integers, Discrete Math. 313 (5), 704-714, 2013.
  • [6] M. Güzeltepe, On some perfect codes over Hurwitz integers, Mathematical Advances in Pure and Applied Sciences 1 (1), 39-45, 2018.
  • [7] M. Güzeltepe and A. Altınel, Perfect 1-error-correcting Hurwitz weight codes, Math. Commun. 22 (2), 265-272, 2017.
  • [8] M. Güzeltepe and O. Heden, Perfect Mannheim, Lipschitz and Hurwitz weight codes, Math. Commun. 19 (2), 253-276, 2014.
  • [9] M. Özen and M. Güzeltepe, Codes over quaternion integers, Eur. J. Pure Appl. Math. 3 (4), 670-677, 2010.
  • [10] M. Özen and M. Güzeltepe, Cyclic codes over some finite quaternion integer rings, J. Franklin Inst. 348 (7), 1312-1317, 2011.
  • [11] D. Rohweder and S. Stern, Fischer, R.F.H., Shavgulidze, S., Freudenberger, J.: Four- Dimensional Hurwitz Signal Constellations, Set Partitioning, Detection, and Multi- level Coding, in: IEEE Transactions on Communications, 69 (8), 5079-5090, 2021.
  • [12] T. Shah and S.S. Rasool, On codes over quaternion integers, Appl. Algebra Engrg. Comm. Comput. 24 (6), 477-496, 2013.

An algebraic construction technique for codes over Hurwitz integers

Year 2023, , 652 - 672, 30.05.2023
https://doi.org/10.15672/hujms.1137425

Abstract

Let $\alpha$ be a prime Hurwitz integer. $\mathcal{H}_{\alpha}$, which is the set of residual class with respect to related modulo function in the rings of Hurwitz integers, is a subset of $\mathcal{H},$ which is the set of all Hurwitz integers. In this study, we present an algebraic construction technique, which is a modulo function formed depending on two modulo operations, for codes over Hurwitz integers. We consider left congruent modulo $\alpha,$ and the domain of related modulo function is $\mathbb{Z}_{N(\alpha)},$ which is residual class ring of ordinary integers with $N(\alpha)$ elements. Therefore, we obtain the residue class rings of Hurwitz integers with $N(\alpha)$ size. In addition, we present some results for mathematical notations used in two modulo functions, and for the algebraic construction technique formed depending upon two modulo functions. Moreover, we presented graphs obtained by graph layout methods, such as spring, high-dimensional, and spiral embedding, for the set of the residual class obtained with respect to the related modulo function in the rings of Hurwitz integers.

References

  • [1] J. Freudenberger, F. Ghaboussi and S. Shavgulidze, New coding techniques for codes over Gaussian integers, IEEE Transactions on Communications 61 (8), 3114-3124, 2013.
  • [2] J. Freudenberger and S. Shavgulidze, New four-dimensional signal constellations from Lipschitz integers for transmission over the Gaussian channel, IEEE Transactions on Communications 63 (7), 2420-2427, 2015.
  • [3] K. Huber, Codes over Gaussian integers, IEEE Trans. Inform. Theory 40 (1), 207-216, 1994.
  • [4] K. Huber, Codes over Eisenstein-Jacobi integers, Finite fields: theory, applications, and algorithms 168, 165179, 1994.
  • [5] M. Güzeltepe, Codes over Hurwitz integers, Discrete Math. 313 (5), 704-714, 2013.
  • [6] M. Güzeltepe, On some perfect codes over Hurwitz integers, Mathematical Advances in Pure and Applied Sciences 1 (1), 39-45, 2018.
  • [7] M. Güzeltepe and A. Altınel, Perfect 1-error-correcting Hurwitz weight codes, Math. Commun. 22 (2), 265-272, 2017.
  • [8] M. Güzeltepe and O. Heden, Perfect Mannheim, Lipschitz and Hurwitz weight codes, Math. Commun. 19 (2), 253-276, 2014.
  • [9] M. Özen and M. Güzeltepe, Codes over quaternion integers, Eur. J. Pure Appl. Math. 3 (4), 670-677, 2010.
  • [10] M. Özen and M. Güzeltepe, Cyclic codes over some finite quaternion integer rings, J. Franklin Inst. 348 (7), 1312-1317, 2011.
  • [11] D. Rohweder and S. Stern, Fischer, R.F.H., Shavgulidze, S., Freudenberger, J.: Four- Dimensional Hurwitz Signal Constellations, Set Partitioning, Detection, and Multi- level Coding, in: IEEE Transactions on Communications, 69 (8), 5079-5090, 2021.
  • [12] T. Shah and S.S. Rasool, On codes over quaternion integers, Appl. Algebra Engrg. Comm. Comput. 24 (6), 477-496, 2013.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Ramazan Duran 0000-0002-8076-0557

Murat Güzeltepe 0000-0002-2089-5660

Publication Date May 30, 2023
Published in Issue Year 2023

Cite

APA Duran, R., & Güzeltepe, M. (2023). An algebraic construction technique for codes over Hurwitz integers. Hacettepe Journal of Mathematics and Statistics, 52(3), 652-672. https://doi.org/10.15672/hujms.1137425
AMA Duran R, Güzeltepe M. An algebraic construction technique for codes over Hurwitz integers. Hacettepe Journal of Mathematics and Statistics. May 2023;52(3):652-672. doi:10.15672/hujms.1137425
Chicago Duran, Ramazan, and Murat Güzeltepe. “An Algebraic Construction Technique for Codes over Hurwitz Integers”. Hacettepe Journal of Mathematics and Statistics 52, no. 3 (May 2023): 652-72. https://doi.org/10.15672/hujms.1137425.
EndNote Duran R, Güzeltepe M (May 1, 2023) An algebraic construction technique for codes over Hurwitz integers. Hacettepe Journal of Mathematics and Statistics 52 3 652–672.
IEEE R. Duran and M. Güzeltepe, “An algebraic construction technique for codes over Hurwitz integers”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 3, pp. 652–672, 2023, doi: 10.15672/hujms.1137425.
ISNAD Duran, Ramazan - Güzeltepe, Murat. “An Algebraic Construction Technique for Codes over Hurwitz Integers”. Hacettepe Journal of Mathematics and Statistics 52/3 (May 2023), 652-672. https://doi.org/10.15672/hujms.1137425.
JAMA Duran R, Güzeltepe M. An algebraic construction technique for codes over Hurwitz integers. Hacettepe Journal of Mathematics and Statistics. 2023;52:652–672.
MLA Duran, Ramazan and Murat Güzeltepe. “An Algebraic Construction Technique for Codes over Hurwitz Integers”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 3, 2023, pp. 652-7, doi:10.15672/hujms.1137425.
Vancouver Duran R, Güzeltepe M. An algebraic construction technique for codes over Hurwitz integers. Hacettepe Journal of Mathematics and Statistics. 2023;52(3):652-7.