Year 2023,
, 828 - 840, 30.05.2023
Ali Erkoç
,
Esra Ertan
,
Zakariya Yahya Algamal
,
Kadri Ulaş Akay
References
- [1] M.R. Abonazel, Z.Y. Algamal, F.A. Awwad, and I.M. Taha, A new two-parameter
estimator for beta regression model: method, simulation, and application, Front. Appl.
Math. Stat. 7, 780322, 1–10, 2022.
- [2] M.R. Abonazel, I. Dawoud, F.A. Awwad, and A.F. Lukman, DawoudKibria estimator
for Beta regression model: simulation and application, Front. Appl. Math. Stat. 8,
775068, 1-12, 2022.
- [3] M.R. Abonazel and I.M. Taha, Beta ridge regression estimators: simulation and application,
Comm. Statist. Simulation Comput., Doi: 10.1080/03610918.2021.1960373,
2021.
- [4] K.U. Akay and E. Ertan, A new Liu-type estimator in Poisson regression models,
Hacet. J. Math. Stat. 51 (5), 1484-1503, 2022.
- [5] M.N. Akram, M. Amin, A. Elhassanein, and M.A. Ullah, A new modified ridge-type
estimator for the beta regression model: simulation and application, AIMS Math. 7
(1), 10351057.
- [6] Z.Y. Algamal, Diagnostic in poisson regression models, Electron. J. Appl. Stat. Anal.
5 (2), 178-186, 2012.
- [7] Z.Y. Algamal, Performance of ridge estimator in inverse Gaussian regression model,
Comm. Statist. Theory Methods 48 (15), 3836-3849, 2019.
- [8] Z.Y. Algamal and M.R. Abonazel, Developing a Liu-type estimator in beta regression
model, Concurr. Comp.-Pract. E. 34, e6685, 1-11, 2021.
- [9] Z.Y. Algamal and M.M. Alanaz, Proposed methods in estimating the ridge regression
parameter in Poisson regression model, Electron. J. Appl. Stat. Anal. 11 (2), 506-515,
2018.
- [10] Z.Y. Algamal and Y. Asar, Liu-type estimator for the gamma regression model,
Comm. Statist. Simulation Comput. 49 (8), 2035-2048, 2020.
- [11] I. Dawoud and B.M.G. Kibria, A new biased estimator to combat the multicollinearity
of the gaussian linear regression model, Stats 3 (4), 526-541, 2020.
- [12] E. Ertan and K.U. Akay, A new Liu-type estimator in binary logistic regression models,
Comm. Statist. Theory Methods 51 (13), 4370-4394, 2022.
- [13] P.L. Espinheira, S.L.P. Ferrari, and F. Cribari-Neto, On beta regression residuals, J.
Appl. Stat. 35 (4), 407-419, 2008.
- [14] P.L. Espinheira, L.C.M. Silva, and A.D.O. Silva, Prediction measures in beta regression
models, arXiv: 1501.04830 [stat.AP].
- [15] P.L. Espinheira, L.C.M. Silva, A.D.O. Silva, and R. Ospina, Model selection criteria
on beta regression for machine learning, Mach. Learn. Knowl. Extr. 1 (1), 427-449,
2019.
- [16] S. Ferrari and F. Cribari-Neto, Beta regression for modeling rates and proportions, J.
Appl. Stat. 31 (7), 799815, 2004.
- [17] A.E. Hoerl and R.W. Kennard, Ridge regression: Biased estimation for nonorthogonal
problems, Technometrics, 12 (1), 55-67, 1970.
- [18] P. Karlsson, K. Månsson and B.M.G. Kibria, A Liu estimator for the beta regression
model and its application to chemical data, J. Chemom. 34 (10), 2020.
- [19] B.M.G. Kibria, Some Liu and ridge-type estimators and their properties under the Illconditioned
Gaussian linear regression model, J. Stat. Comput. Simul. 82 (1), 1-17,
2012.
- [20] K. Liu, A new class of biased estimate in linear regression, Comm. Statist. Theory
Methods 22 (2), 393-402, 1993.
- [21] K. Liu, Using Liu-type estimator to combat collinearity, Comm. Statist. Theory Methods
32 (5), 1009-1020, 2003.
- [22] K. Månsson and B.M.G. Kibria, Estimating the unrestricted and restricted Liu estimators
for the Poisson regression model: method and application, Comput. Econ. 58
(2), 311-326, 2021.
- [23] K. Månsson, B.M.G. Kibria, and G. Shukur, Some Liu Type Estimators for the dynamic
OLS estimator: with an application to the carbon dioxide Kuznets curve for
Turkey, Commun. Stat. Case Stud. Data Anal. Appl. 3 (3-4), 55-61, 2017.
- [24] S. Pirmohammadi and H. Bidram, On the Liu estimator in the beta and Kumaraswamy
regression models: A comparative study, Comm. Statist. Theory Methods
51 (24), 8553-8578, 2021.
- [25] M. Qasim, M. Amin and T. Omer, Performance of some new Liu parameters for the
linear regression model, Comm. Statist. Theory Methods 49 (17), 41784196, 2020.
- [26] M. Qasim, K. Månsson, and B.M.G. Kibria, On some beta ridge regression estimators:
method, simulation and application, J. Stat. Comput. Simul. 91 (9), 1699-1712, 2021.
- [27] N.K. Rashad and Z.Y. Algamal, A new ridge estimator for the Poisson regression
model, Iran. J. Sci. Technol. Trans. A: Sci. 43 (6), 2921-2928, 2019.
The beta Liu-type estimator: simulation and application
Year 2023,
, 828 - 840, 30.05.2023
Ali Erkoç
,
Esra Ertan
,
Zakariya Yahya Algamal
,
Kadri Ulaş Akay
Abstract
The Beta Regression Model (BRM) is commonly used while analyzing data where the dependent variable is restricted to the interval $[0,1]$ for example proportion or probability. The Maximum Likelihood Estimator (MLE) is used to estimate the regression coefficients of BRMs. But in the presence of multicollinearity, MLE is very sensitive to high correlation among the explanatory variables. For this reason, we introduce a new biased estimator called the Beta Liu-Type Estimator (BLTE) to overcome the multicollinearity problem in the case that dependent variable follows a Beta distribution. The proposed estimator is a general estimator which includes other biased estimators, such as the Ridge Estimator, Liu Estimator, and the estimators with two biasing parameters as special cases in BRM. The performance of the proposed new estimator is compared to the MLE and other biased estimators in terms of the Estimated Mean Squared Error (EMSE) criterion by conducting a simulation study. Finally, a numerical example is given to show the benefit of the proposed estimator over existing estimators.
References
- [1] M.R. Abonazel, Z.Y. Algamal, F.A. Awwad, and I.M. Taha, A new two-parameter
estimator for beta regression model: method, simulation, and application, Front. Appl.
Math. Stat. 7, 780322, 1–10, 2022.
- [2] M.R. Abonazel, I. Dawoud, F.A. Awwad, and A.F. Lukman, DawoudKibria estimator
for Beta regression model: simulation and application, Front. Appl. Math. Stat. 8,
775068, 1-12, 2022.
- [3] M.R. Abonazel and I.M. Taha, Beta ridge regression estimators: simulation and application,
Comm. Statist. Simulation Comput., Doi: 10.1080/03610918.2021.1960373,
2021.
- [4] K.U. Akay and E. Ertan, A new Liu-type estimator in Poisson regression models,
Hacet. J. Math. Stat. 51 (5), 1484-1503, 2022.
- [5] M.N. Akram, M. Amin, A. Elhassanein, and M.A. Ullah, A new modified ridge-type
estimator for the beta regression model: simulation and application, AIMS Math. 7
(1), 10351057.
- [6] Z.Y. Algamal, Diagnostic in poisson regression models, Electron. J. Appl. Stat. Anal.
5 (2), 178-186, 2012.
- [7] Z.Y. Algamal, Performance of ridge estimator in inverse Gaussian regression model,
Comm. Statist. Theory Methods 48 (15), 3836-3849, 2019.
- [8] Z.Y. Algamal and M.R. Abonazel, Developing a Liu-type estimator in beta regression
model, Concurr. Comp.-Pract. E. 34, e6685, 1-11, 2021.
- [9] Z.Y. Algamal and M.M. Alanaz, Proposed methods in estimating the ridge regression
parameter in Poisson regression model, Electron. J. Appl. Stat. Anal. 11 (2), 506-515,
2018.
- [10] Z.Y. Algamal and Y. Asar, Liu-type estimator for the gamma regression model,
Comm. Statist. Simulation Comput. 49 (8), 2035-2048, 2020.
- [11] I. Dawoud and B.M.G. Kibria, A new biased estimator to combat the multicollinearity
of the gaussian linear regression model, Stats 3 (4), 526-541, 2020.
- [12] E. Ertan and K.U. Akay, A new Liu-type estimator in binary logistic regression models,
Comm. Statist. Theory Methods 51 (13), 4370-4394, 2022.
- [13] P.L. Espinheira, S.L.P. Ferrari, and F. Cribari-Neto, On beta regression residuals, J.
Appl. Stat. 35 (4), 407-419, 2008.
- [14] P.L. Espinheira, L.C.M. Silva, and A.D.O. Silva, Prediction measures in beta regression
models, arXiv: 1501.04830 [stat.AP].
- [15] P.L. Espinheira, L.C.M. Silva, A.D.O. Silva, and R. Ospina, Model selection criteria
on beta regression for machine learning, Mach. Learn. Knowl. Extr. 1 (1), 427-449,
2019.
- [16] S. Ferrari and F. Cribari-Neto, Beta regression for modeling rates and proportions, J.
Appl. Stat. 31 (7), 799815, 2004.
- [17] A.E. Hoerl and R.W. Kennard, Ridge regression: Biased estimation for nonorthogonal
problems, Technometrics, 12 (1), 55-67, 1970.
- [18] P. Karlsson, K. Månsson and B.M.G. Kibria, A Liu estimator for the beta regression
model and its application to chemical data, J. Chemom. 34 (10), 2020.
- [19] B.M.G. Kibria, Some Liu and ridge-type estimators and their properties under the Illconditioned
Gaussian linear regression model, J. Stat. Comput. Simul. 82 (1), 1-17,
2012.
- [20] K. Liu, A new class of biased estimate in linear regression, Comm. Statist. Theory
Methods 22 (2), 393-402, 1993.
- [21] K. Liu, Using Liu-type estimator to combat collinearity, Comm. Statist. Theory Methods
32 (5), 1009-1020, 2003.
- [22] K. Månsson and B.M.G. Kibria, Estimating the unrestricted and restricted Liu estimators
for the Poisson regression model: method and application, Comput. Econ. 58
(2), 311-326, 2021.
- [23] K. Månsson, B.M.G. Kibria, and G. Shukur, Some Liu Type Estimators for the dynamic
OLS estimator: with an application to the carbon dioxide Kuznets curve for
Turkey, Commun. Stat. Case Stud. Data Anal. Appl. 3 (3-4), 55-61, 2017.
- [24] S. Pirmohammadi and H. Bidram, On the Liu estimator in the beta and Kumaraswamy
regression models: A comparative study, Comm. Statist. Theory Methods
51 (24), 8553-8578, 2021.
- [25] M. Qasim, M. Amin and T. Omer, Performance of some new Liu parameters for the
linear regression model, Comm. Statist. Theory Methods 49 (17), 41784196, 2020.
- [26] M. Qasim, K. Månsson, and B.M.G. Kibria, On some beta ridge regression estimators:
method, simulation and application, J. Stat. Comput. Simul. 91 (9), 1699-1712, 2021.
- [27] N.K. Rashad and Z.Y. Algamal, A new ridge estimator for the Poisson regression
model, Iran. J. Sci. Technol. Trans. A: Sci. 43 (6), 2921-2928, 2019.