Research Article
BibTex RIS Cite
Year 2023, , 828 - 840, 30.05.2023
https://doi.org/10.15672/hujms.1145607

Abstract

References

  • [1] M.R. Abonazel, Z.Y. Algamal, F.A. Awwad, and I.M. Taha, A new two-parameter estimator for beta regression model: method, simulation, and application, Front. Appl. Math. Stat. 7, 780322, 1–10, 2022.
  • [2] M.R. Abonazel, I. Dawoud, F.A. Awwad, and A.F. Lukman, DawoudKibria estimator for Beta regression model: simulation and application, Front. Appl. Math. Stat. 8, 775068, 1-12, 2022.
  • [3] M.R. Abonazel and I.M. Taha, Beta ridge regression estimators: simulation and application, Comm. Statist. Simulation Comput., Doi: 10.1080/03610918.2021.1960373, 2021.
  • [4] K.U. Akay and E. Ertan, A new Liu-type estimator in Poisson regression models, Hacet. J. Math. Stat. 51 (5), 1484-1503, 2022.
  • [5] M.N. Akram, M. Amin, A. Elhassanein, and M.A. Ullah, A new modified ridge-type estimator for the beta regression model: simulation and application, AIMS Math. 7 (1), 10351057.
  • [6] Z.Y. Algamal, Diagnostic in poisson regression models, Electron. J. Appl. Stat. Anal. 5 (2), 178-186, 2012.
  • [7] Z.Y. Algamal, Performance of ridge estimator in inverse Gaussian regression model, Comm. Statist. Theory Methods 48 (15), 3836-3849, 2019.
  • [8] Z.Y. Algamal and M.R. Abonazel, Developing a Liu-type estimator in beta regression model, Concurr. Comp.-Pract. E. 34, e6685, 1-11, 2021.
  • [9] Z.Y. Algamal and M.M. Alanaz, Proposed methods in estimating the ridge regression parameter in Poisson regression model, Electron. J. Appl. Stat. Anal. 11 (2), 506-515, 2018.
  • [10] Z.Y. Algamal and Y. Asar, Liu-type estimator for the gamma regression model, Comm. Statist. Simulation Comput. 49 (8), 2035-2048, 2020.
  • [11] I. Dawoud and B.M.G. Kibria, A new biased estimator to combat the multicollinearity of the gaussian linear regression model, Stats 3 (4), 526-541, 2020.
  • [12] E. Ertan and K.U. Akay, A new Liu-type estimator in binary logistic regression models, Comm. Statist. Theory Methods 51 (13), 4370-4394, 2022.
  • [13] P.L. Espinheira, S.L.P. Ferrari, and F. Cribari-Neto, On beta regression residuals, J. Appl. Stat. 35 (4), 407-419, 2008.
  • [14] P.L. Espinheira, L.C.M. Silva, and A.D.O. Silva, Prediction measures in beta regression models, arXiv: 1501.04830 [stat.AP].
  • [15] P.L. Espinheira, L.C.M. Silva, A.D.O. Silva, and R. Ospina, Model selection criteria on beta regression for machine learning, Mach. Learn. Knowl. Extr. 1 (1), 427-449, 2019.
  • [16] S. Ferrari and F. Cribari-Neto, Beta regression for modeling rates and proportions, J. Appl. Stat. 31 (7), 799815, 2004.
  • [17] A.E. Hoerl and R.W. Kennard, Ridge regression: Biased estimation for nonorthogonal problems, Technometrics, 12 (1), 55-67, 1970.
  • [18] P. Karlsson, K. Månsson and B.M.G. Kibria, A Liu estimator for the beta regression model and its application to chemical data, J. Chemom. 34 (10), 2020.
  • [19] B.M.G. Kibria, Some Liu and ridge-type estimators and their properties under the Illconditioned Gaussian linear regression model, J. Stat. Comput. Simul. 82 (1), 1-17, 2012.
  • [20] K. Liu, A new class of biased estimate in linear regression, Comm. Statist. Theory Methods 22 (2), 393-402, 1993.
  • [21] K. Liu, Using Liu-type estimator to combat collinearity, Comm. Statist. Theory Methods 32 (5), 1009-1020, 2003.
  • [22] K. Månsson and B.M.G. Kibria, Estimating the unrestricted and restricted Liu estimators for the Poisson regression model: method and application, Comput. Econ. 58 (2), 311-326, 2021.
  • [23] K. Månsson, B.M.G. Kibria, and G. Shukur, Some Liu Type Estimators for the dynamic OLS estimator: with an application to the carbon dioxide Kuznets curve for Turkey, Commun. Stat. Case Stud. Data Anal. Appl. 3 (3-4), 55-61, 2017.
  • [24] S. Pirmohammadi and H. Bidram, On the Liu estimator in the beta and Kumaraswamy regression models: A comparative study, Comm. Statist. Theory Methods 51 (24), 8553-8578, 2021.
  • [25] M. Qasim, M. Amin and T. Omer, Performance of some new Liu parameters for the linear regression model, Comm. Statist. Theory Methods 49 (17), 41784196, 2020.
  • [26] M. Qasim, K. Månsson, and B.M.G. Kibria, On some beta ridge regression estimators: method, simulation and application, J. Stat. Comput. Simul. 91 (9), 1699-1712, 2021.
  • [27] N.K. Rashad and Z.Y. Algamal, A new ridge estimator for the Poisson regression model, Iran. J. Sci. Technol. Trans. A: Sci. 43 (6), 2921-2928, 2019.

The beta Liu-type estimator: simulation and application

Year 2023, , 828 - 840, 30.05.2023
https://doi.org/10.15672/hujms.1145607

Abstract

The Beta Regression Model (BRM) is commonly used while analyzing data where the dependent variable is restricted to the interval $[0,1]$ for example proportion or probability. The Maximum Likelihood Estimator (MLE) is used to estimate the regression coefficients of BRMs. But in the presence of multicollinearity, MLE is very sensitive to high correlation among the explanatory variables. For this reason, we introduce a new biased estimator called the Beta Liu-Type Estimator (BLTE) to overcome the multicollinearity problem in the case that dependent variable follows a Beta distribution. The proposed estimator is a general estimator which includes other biased estimators, such as the Ridge Estimator, Liu Estimator, and the estimators with two biasing parameters as special cases in BRM. The performance of the proposed new estimator is compared to the MLE and other biased estimators in terms of the Estimated Mean Squared Error (EMSE) criterion by conducting a simulation study. Finally, a numerical example is given to show the benefit of the proposed estimator over existing estimators.

References

  • [1] M.R. Abonazel, Z.Y. Algamal, F.A. Awwad, and I.M. Taha, A new two-parameter estimator for beta regression model: method, simulation, and application, Front. Appl. Math. Stat. 7, 780322, 1–10, 2022.
  • [2] M.R. Abonazel, I. Dawoud, F.A. Awwad, and A.F. Lukman, DawoudKibria estimator for Beta regression model: simulation and application, Front. Appl. Math. Stat. 8, 775068, 1-12, 2022.
  • [3] M.R. Abonazel and I.M. Taha, Beta ridge regression estimators: simulation and application, Comm. Statist. Simulation Comput., Doi: 10.1080/03610918.2021.1960373, 2021.
  • [4] K.U. Akay and E. Ertan, A new Liu-type estimator in Poisson regression models, Hacet. J. Math. Stat. 51 (5), 1484-1503, 2022.
  • [5] M.N. Akram, M. Amin, A. Elhassanein, and M.A. Ullah, A new modified ridge-type estimator for the beta regression model: simulation and application, AIMS Math. 7 (1), 10351057.
  • [6] Z.Y. Algamal, Diagnostic in poisson regression models, Electron. J. Appl. Stat. Anal. 5 (2), 178-186, 2012.
  • [7] Z.Y. Algamal, Performance of ridge estimator in inverse Gaussian regression model, Comm. Statist. Theory Methods 48 (15), 3836-3849, 2019.
  • [8] Z.Y. Algamal and M.R. Abonazel, Developing a Liu-type estimator in beta regression model, Concurr. Comp.-Pract. E. 34, e6685, 1-11, 2021.
  • [9] Z.Y. Algamal and M.M. Alanaz, Proposed methods in estimating the ridge regression parameter in Poisson regression model, Electron. J. Appl. Stat. Anal. 11 (2), 506-515, 2018.
  • [10] Z.Y. Algamal and Y. Asar, Liu-type estimator for the gamma regression model, Comm. Statist. Simulation Comput. 49 (8), 2035-2048, 2020.
  • [11] I. Dawoud and B.M.G. Kibria, A new biased estimator to combat the multicollinearity of the gaussian linear regression model, Stats 3 (4), 526-541, 2020.
  • [12] E. Ertan and K.U. Akay, A new Liu-type estimator in binary logistic regression models, Comm. Statist. Theory Methods 51 (13), 4370-4394, 2022.
  • [13] P.L. Espinheira, S.L.P. Ferrari, and F. Cribari-Neto, On beta regression residuals, J. Appl. Stat. 35 (4), 407-419, 2008.
  • [14] P.L. Espinheira, L.C.M. Silva, and A.D.O. Silva, Prediction measures in beta regression models, arXiv: 1501.04830 [stat.AP].
  • [15] P.L. Espinheira, L.C.M. Silva, A.D.O. Silva, and R. Ospina, Model selection criteria on beta regression for machine learning, Mach. Learn. Knowl. Extr. 1 (1), 427-449, 2019.
  • [16] S. Ferrari and F. Cribari-Neto, Beta regression for modeling rates and proportions, J. Appl. Stat. 31 (7), 799815, 2004.
  • [17] A.E. Hoerl and R.W. Kennard, Ridge regression: Biased estimation for nonorthogonal problems, Technometrics, 12 (1), 55-67, 1970.
  • [18] P. Karlsson, K. Månsson and B.M.G. Kibria, A Liu estimator for the beta regression model and its application to chemical data, J. Chemom. 34 (10), 2020.
  • [19] B.M.G. Kibria, Some Liu and ridge-type estimators and their properties under the Illconditioned Gaussian linear regression model, J. Stat. Comput. Simul. 82 (1), 1-17, 2012.
  • [20] K. Liu, A new class of biased estimate in linear regression, Comm. Statist. Theory Methods 22 (2), 393-402, 1993.
  • [21] K. Liu, Using Liu-type estimator to combat collinearity, Comm. Statist. Theory Methods 32 (5), 1009-1020, 2003.
  • [22] K. Månsson and B.M.G. Kibria, Estimating the unrestricted and restricted Liu estimators for the Poisson regression model: method and application, Comput. Econ. 58 (2), 311-326, 2021.
  • [23] K. Månsson, B.M.G. Kibria, and G. Shukur, Some Liu Type Estimators for the dynamic OLS estimator: with an application to the carbon dioxide Kuznets curve for Turkey, Commun. Stat. Case Stud. Data Anal. Appl. 3 (3-4), 55-61, 2017.
  • [24] S. Pirmohammadi and H. Bidram, On the Liu estimator in the beta and Kumaraswamy regression models: A comparative study, Comm. Statist. Theory Methods 51 (24), 8553-8578, 2021.
  • [25] M. Qasim, M. Amin and T. Omer, Performance of some new Liu parameters for the linear regression model, Comm. Statist. Theory Methods 49 (17), 41784196, 2020.
  • [26] M. Qasim, K. Månsson, and B.M.G. Kibria, On some beta ridge regression estimators: method, simulation and application, J. Stat. Comput. Simul. 91 (9), 1699-1712, 2021.
  • [27] N.K. Rashad and Z.Y. Algamal, A new ridge estimator for the Poisson regression model, Iran. J. Sci. Technol. Trans. A: Sci. 43 (6), 2921-2928, 2019.
There are 27 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Statistics
Authors

Ali Erkoç 0000-0003-4597-4282

Esra Ertan 0000-0003-3941-7949

Zakariya Yahya Algamal 0000-0002-0229-7958

Kadri Ulaş Akay 0000-0002-8668-2879

Publication Date May 30, 2023
Published in Issue Year 2023

Cite

APA Erkoç, A., Ertan, E., Algamal, Z. Y., Akay, K. U. (2023). The beta Liu-type estimator: simulation and application. Hacettepe Journal of Mathematics and Statistics, 52(3), 828-840. https://doi.org/10.15672/hujms.1145607
AMA Erkoç A, Ertan E, Algamal ZY, Akay KU. The beta Liu-type estimator: simulation and application. Hacettepe Journal of Mathematics and Statistics. May 2023;52(3):828-840. doi:10.15672/hujms.1145607
Chicago Erkoç, Ali, Esra Ertan, Zakariya Yahya Algamal, and Kadri Ulaş Akay. “The Beta Liu-Type Estimator: Simulation and Application”. Hacettepe Journal of Mathematics and Statistics 52, no. 3 (May 2023): 828-40. https://doi.org/10.15672/hujms.1145607.
EndNote Erkoç A, Ertan E, Algamal ZY, Akay KU (May 1, 2023) The beta Liu-type estimator: simulation and application. Hacettepe Journal of Mathematics and Statistics 52 3 828–840.
IEEE A. Erkoç, E. Ertan, Z. Y. Algamal, and K. U. Akay, “The beta Liu-type estimator: simulation and application”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 3, pp. 828–840, 2023, doi: 10.15672/hujms.1145607.
ISNAD Erkoç, Ali et al. “The Beta Liu-Type Estimator: Simulation and Application”. Hacettepe Journal of Mathematics and Statistics 52/3 (May 2023), 828-840. https://doi.org/10.15672/hujms.1145607.
JAMA Erkoç A, Ertan E, Algamal ZY, Akay KU. The beta Liu-type estimator: simulation and application. Hacettepe Journal of Mathematics and Statistics. 2023;52:828–840.
MLA Erkoç, Ali et al. “The Beta Liu-Type Estimator: Simulation and Application”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 3, 2023, pp. 828-40, doi:10.15672/hujms.1145607.
Vancouver Erkoç A, Ertan E, Algamal ZY, Akay KU. The beta Liu-type estimator: simulation and application. Hacettepe Journal of Mathematics and Statistics. 2023;52(3):828-40.