Year 2023,
, 995 - 1005, 15.08.2023
Pascual Lucas
,
José Antonio Ortega Yagües
References
- [1] A. J. C. Barré de Saint-Venant, Mémoire sur les lignes courbes non planes, Journ.
Ec. Polyt. 30, 1–76, 1846.
- [2] B. Y. Chen, When does the position vector of a space curve always lie in its rectifying
plane?, Amer. Math. Monthly 110, 147–152, 2003.
- [3] B. Y. Chen, Differential geometry of rectifying submanifolds, Int. Electron. J. Geom.
9, 1–8, 2016.
- [4] B. Y. Chen, Rectifying curves and geodesics on a cone in the Euclidean 3-space,
Tamkang J. Math. 48, 209–214, 2017.
- [5] M. Crampin, Concircular vector fields and special conformal Killing tensors, in: Differential
Geometric Methods in Mechanics and Field Theory, 57–70, Academia Press,
Gent, 2007.
- [6] A. J. Di Scala and G. Ruiz-Hernández, Helix submanifolds of Euclidean spaces,
Monasth Math. 157, 205–215, 2009.
- [7] A. Fialkow, Conformals geodesics, Trans. Amer. Math. Soc. 45 (3), 443–473, 1939.
- [8] S. Izumiya and N. Takeuchi, New special curves and developable surfaces, Turk. J.
Math. 28, 153–163, 2004.
- [9] I. B. Kim, Special concircular vector fields in Riemannian manifolds, Hirosima Math.
J. 12, 77–91, 1982.
- [10] P. Lucas and J. A. Ortega-Yagües, Slant helices in the Euclidean 3-space revisited,
Bull. Belg. Math. Soc. Simon Stevin 23, 133–150, 2016.
- [11] M. I. Munteanu, From golden spirals to constant slope surfaces, J. Math. Phys. 51,
073507, 2010.
- [12] P. D. Scofield, Curves of constant precession, Amer. Math. Monthly 102, 531–537,
1995.
- [13] D. J. Struik, Lectures on Classical Differential Geometry, Dover, New York, 1988.
- [14] K. Yano, Concircular geometry I, concircular transformations, Proc. Imp. Acad.
Tokyo 16, 195–200, 1940.
Concircular helices and concircular surfaces in Euclidean 3-space $\mathbb{R}^{3}$
Year 2023,
, 995 - 1005, 15.08.2023
Pascual Lucas
,
José Antonio Ortega Yagües
Abstract
In this paper we characterize concircular helices in $\mathbb{R}^{3}$ by means of a differential equation involving their curvature and torsion. We find a full description of concircular surfaces in $\mathbb{R}^{3}$ as a special family of ruled surfaces, and we show that $M\subset\mathbb{R}^{3}$ is a proper concircular surface if and only if either $M$ is parallel to a conical surface or $M$ is the normal surface to a spherical curve. Finally, we characterize the concircular helices as geodesics of concircular surfaces.
References
- [1] A. J. C. Barré de Saint-Venant, Mémoire sur les lignes courbes non planes, Journ.
Ec. Polyt. 30, 1–76, 1846.
- [2] B. Y. Chen, When does the position vector of a space curve always lie in its rectifying
plane?, Amer. Math. Monthly 110, 147–152, 2003.
- [3] B. Y. Chen, Differential geometry of rectifying submanifolds, Int. Electron. J. Geom.
9, 1–8, 2016.
- [4] B. Y. Chen, Rectifying curves and geodesics on a cone in the Euclidean 3-space,
Tamkang J. Math. 48, 209–214, 2017.
- [5] M. Crampin, Concircular vector fields and special conformal Killing tensors, in: Differential
Geometric Methods in Mechanics and Field Theory, 57–70, Academia Press,
Gent, 2007.
- [6] A. J. Di Scala and G. Ruiz-Hernández, Helix submanifolds of Euclidean spaces,
Monasth Math. 157, 205–215, 2009.
- [7] A. Fialkow, Conformals geodesics, Trans. Amer. Math. Soc. 45 (3), 443–473, 1939.
- [8] S. Izumiya and N. Takeuchi, New special curves and developable surfaces, Turk. J.
Math. 28, 153–163, 2004.
- [9] I. B. Kim, Special concircular vector fields in Riemannian manifolds, Hirosima Math.
J. 12, 77–91, 1982.
- [10] P. Lucas and J. A. Ortega-Yagües, Slant helices in the Euclidean 3-space revisited,
Bull. Belg. Math. Soc. Simon Stevin 23, 133–150, 2016.
- [11] M. I. Munteanu, From golden spirals to constant slope surfaces, J. Math. Phys. 51,
073507, 2010.
- [12] P. D. Scofield, Curves of constant precession, Amer. Math. Monthly 102, 531–537,
1995.
- [13] D. J. Struik, Lectures on Classical Differential Geometry, Dover, New York, 1988.
- [14] K. Yano, Concircular geometry I, concircular transformations, Proc. Imp. Acad.
Tokyo 16, 195–200, 1940.