Research Article
BibTex RIS Cite

Fusible modules

Year 2024, , 714 - 723, 27.06.2024
https://doi.org/10.15672/hujms.1206395

Abstract

In this paper, we extend the concept of fusibility to the module-theoretic setting by introducing fusible modules. Let $R$ be a ring with identity, $M$ a right $R$-module and $0\neq m\in M$. Then, $m$ is called fusible if it can be expressed as the sum of a torsion element and a torsion-free element in $M$. The module $M$ is said to be fusible if every non-zero element of $M$ is fusible. We investigate some properties of fusible modules. It is proved that the class of fusible modules is between the classes of torsion-free and nonsingular modules.

References

  • [1] E. Ghashghaei and W. Wm. McGovern, Fusible rings, Comm. Algebra 45 (3), 1151- 1165, 2017.
  • [2] T.Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 1991.
  • [3] T.K. Lee and Y. Zhou, Reduced modules, in: Rings, modules, algebras, and abelian groups, Lecture Notes in Pure and Appl. Math. 236, 365-377, Dekker, New York, 2004.
  • [4] G. Marks and R. Mazurek, Rings with linearly ordered right annihilators, Israel J. Math. 216, 415-440, 2016.
Year 2024, , 714 - 723, 27.06.2024
https://doi.org/10.15672/hujms.1206395

Abstract

References

  • [1] E. Ghashghaei and W. Wm. McGovern, Fusible rings, Comm. Algebra 45 (3), 1151- 1165, 2017.
  • [2] T.Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 1991.
  • [3] T.K. Lee and Y. Zhou, Reduced modules, in: Rings, modules, algebras, and abelian groups, Lecture Notes in Pure and Appl. Math. 236, 365-377, Dekker, New York, 2004.
  • [4] G. Marks and R. Mazurek, Rings with linearly ordered right annihilators, Israel J. Math. 216, 415-440, 2016.
There are 4 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Işıl Baydar 0000-0002-6165-0555

Burcu Üngör

Sait Halicioglu 0000-0003-0792-1868

Abdullah Harmancı 0000-0001-5691-933X

Early Pub Date September 14, 2023
Publication Date June 27, 2024
Published in Issue Year 2024

Cite

APA Baydar, I., Üngör, B., Halicioglu, S., Harmancı, A. (2024). Fusible modules. Hacettepe Journal of Mathematics and Statistics, 53(3), 714-723. https://doi.org/10.15672/hujms.1206395
AMA Baydar I, Üngör B, Halicioglu S, Harmancı A. Fusible modules. Hacettepe Journal of Mathematics and Statistics. June 2024;53(3):714-723. doi:10.15672/hujms.1206395
Chicago Baydar, Işıl, Burcu Üngör, Sait Halicioglu, and Abdullah Harmancı. “Fusible Modules”. Hacettepe Journal of Mathematics and Statistics 53, no. 3 (June 2024): 714-23. https://doi.org/10.15672/hujms.1206395.
EndNote Baydar I, Üngör B, Halicioglu S, Harmancı A (June 1, 2024) Fusible modules. Hacettepe Journal of Mathematics and Statistics 53 3 714–723.
IEEE I. Baydar, B. Üngör, S. Halicioglu, and A. Harmancı, “Fusible modules”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 3, pp. 714–723, 2024, doi: 10.15672/hujms.1206395.
ISNAD Baydar, Işıl et al. “Fusible Modules”. Hacettepe Journal of Mathematics and Statistics 53/3 (June 2024), 714-723. https://doi.org/10.15672/hujms.1206395.
JAMA Baydar I, Üngör B, Halicioglu S, Harmancı A. Fusible modules. Hacettepe Journal of Mathematics and Statistics. 2024;53:714–723.
MLA Baydar, Işıl et al. “Fusible Modules”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 3, 2024, pp. 714-23, doi:10.15672/hujms.1206395.
Vancouver Baydar I, Üngör B, Halicioglu S, Harmancı A. Fusible modules. Hacettepe Journal of Mathematics and Statistics. 2024;53(3):714-23.