Research Article
BibTex RIS Cite

Intersection graphs of quasinormal subgroups of general skew linear groups

Year 2024, , 392 - 404, 23.04.2024
https://doi.org/10.15672/hujms.1249433

Abstract

The intersection graph of quasinormal subgroups of a group $G$, denoted by $\Gamma_{\mathrm{q}}(G)$, is a graph defined as follows: the vertex set consists of all nontrivial, proper quasinormal subgroups of $G$, and two distinct vertices $H$ and $K$ are adjacent if $H\cap K$ is nontrivial. In this paper, we show that when $G$ is an arbitrary nonsimple group, the diameter of $\Gamma_{\mathrm{q}}(G)$ is in $\{0,1,2,\infty\}$. Besides, all general skew linear groups $\mathrm{GL}_n(D)$ over a division ring $D$ can be classified depending on the diameter of $\Gamma_{\mathrm{q}}(\mathrm{GL}_n(D))$.

Supporting Institution

Vietnam National University HoChiMinh City (VNUHCM)

Project Number

T2022-18-03

Thanks

This research is funded by Vietnam National University HoChiMinh City (VNUHCM) under grant number T2022-18-03.

References

  • [1] S. Akbari, F. Heydari and M. Maghasedi, The Intersection Graph of a Group, J. Algebra its Appl. 14(05), Article No. 1550065 (9 pages), 2015.
  • [2] S. Akbari, R. Nikandish, M. J. Nikmehr, Some Results on the Intersection Graphs of Ideals of Rings, J. Algebra its Appl. 12(4), Article No. 1250200 (13 pages), 2013.
  • [3] S. Akbari, H. Tavallae, S. K. Ghezelahmad, Some Results on the Intersection Graph of Submodules of a Module, Math. Slovaca 67(2), 297-304, 2017.
  • [4] M. H. Bien and D. H. Viet, Intersection Graphs of General Linear Groups, J. Algebra its Appl. 20(03), Article No. 2150039 (12 pages), 2021.
  • [5] J. Bosak, The Graphs of Semigroups (in Theory of Graphs and Application), Academic Press-New York, 119125, 1964.
  • [6] A. Cayley, Desiderata and Suggestions: No. 2. The Theory of Groups: Graphical Representation, Am. J. Math. 1, 174-176, 1878.
  • [7] S. K. Chebolu and K.Lockridge, Fuchs Problem for Indecomposable Abelian Groups, J. Algebra 438, 325336, 2015.
  • [8] L. Q. Danh, M. H. Bien and B. X. Hai, Permutable Subgroups in $\mathrm{GL}_n(D)$ and Applications to Locally Finite Group Algebras, Vietnam J. Math. 53(2), 277–288, 2023.
  • [9] L. Q. Danh and H. V. Khanh, Locally Solvable Subnormal and Quasinormal Subgroups in Division Rings, Hiroshima Math. J. 51, 267-274, 2021.
  • [10] P. K. Draxl, Skew Fields (London Mathematical Society Lecture Note Series 81), Cambridge University Press, 1983.
  • [11] C. Faith, Algebraic Division Ring Extensions, Proc. Amer. Math. Soc. 11(1), 43–43, 1960.
  • [12] F. Gross, Infinite Permutable Subgroups, Rocky Mt. J. Math. 12(2), 333-343, 1982.
  • [13] I. N. Herstein, Multiplicative Commutators in Division Rings, Isr. J. Math. 31(2), 180-188, 1978.
  • [14] M. Mahdavi-Hezavehi, Commutators in Division Rings Revisited, Bull. Iran. Math. Soc. 26(2), 7-88, 2000.
  • [15] V. Ramanathan, On Projective Intersection Graph of Ideals of Commutative Rings, J. Algebra its Appl. (20)(2), Article No 2150017, (16 pages), 2021.
  • [16] D. J. S. Robinson, A Course in the Theory of Groups (Graduate Texts in Mathematics), Springer, 1995.
  • [17] W.R.Scott, Group Theory, Dover Publications, Inc. New York, 1987.
  • [18] S. E. Stonehewer, Permutable Subgroups of Infinite Groups, Math. Z. 125, 1-16, 1972.
  • [19] B. A. F. Wehrfritz, Soluble Normal Subgroups of Skew Linear Groups, J. Pure Appl. Algebra 42(5), 95107, 1986.
  • [20] B. A. F. Wehrfritz, Soluble and Locally Soluble Skew Linear Groups, Arch. Math. 49(5), 379388, 1987.
Year 2024, , 392 - 404, 23.04.2024
https://doi.org/10.15672/hujms.1249433

Abstract

Project Number

T2022-18-03

References

  • [1] S. Akbari, F. Heydari and M. Maghasedi, The Intersection Graph of a Group, J. Algebra its Appl. 14(05), Article No. 1550065 (9 pages), 2015.
  • [2] S. Akbari, R. Nikandish, M. J. Nikmehr, Some Results on the Intersection Graphs of Ideals of Rings, J. Algebra its Appl. 12(4), Article No. 1250200 (13 pages), 2013.
  • [3] S. Akbari, H. Tavallae, S. K. Ghezelahmad, Some Results on the Intersection Graph of Submodules of a Module, Math. Slovaca 67(2), 297-304, 2017.
  • [4] M. H. Bien and D. H. Viet, Intersection Graphs of General Linear Groups, J. Algebra its Appl. 20(03), Article No. 2150039 (12 pages), 2021.
  • [5] J. Bosak, The Graphs of Semigroups (in Theory of Graphs and Application), Academic Press-New York, 119125, 1964.
  • [6] A. Cayley, Desiderata and Suggestions: No. 2. The Theory of Groups: Graphical Representation, Am. J. Math. 1, 174-176, 1878.
  • [7] S. K. Chebolu and K.Lockridge, Fuchs Problem for Indecomposable Abelian Groups, J. Algebra 438, 325336, 2015.
  • [8] L. Q. Danh, M. H. Bien and B. X. Hai, Permutable Subgroups in $\mathrm{GL}_n(D)$ and Applications to Locally Finite Group Algebras, Vietnam J. Math. 53(2), 277–288, 2023.
  • [9] L. Q. Danh and H. V. Khanh, Locally Solvable Subnormal and Quasinormal Subgroups in Division Rings, Hiroshima Math. J. 51, 267-274, 2021.
  • [10] P. K. Draxl, Skew Fields (London Mathematical Society Lecture Note Series 81), Cambridge University Press, 1983.
  • [11] C. Faith, Algebraic Division Ring Extensions, Proc. Amer. Math. Soc. 11(1), 43–43, 1960.
  • [12] F. Gross, Infinite Permutable Subgroups, Rocky Mt. J. Math. 12(2), 333-343, 1982.
  • [13] I. N. Herstein, Multiplicative Commutators in Division Rings, Isr. J. Math. 31(2), 180-188, 1978.
  • [14] M. Mahdavi-Hezavehi, Commutators in Division Rings Revisited, Bull. Iran. Math. Soc. 26(2), 7-88, 2000.
  • [15] V. Ramanathan, On Projective Intersection Graph of Ideals of Commutative Rings, J. Algebra its Appl. (20)(2), Article No 2150017, (16 pages), 2021.
  • [16] D. J. S. Robinson, A Course in the Theory of Groups (Graduate Texts in Mathematics), Springer, 1995.
  • [17] W.R.Scott, Group Theory, Dover Publications, Inc. New York, 1987.
  • [18] S. E. Stonehewer, Permutable Subgroups of Infinite Groups, Math. Z. 125, 1-16, 1972.
  • [19] B. A. F. Wehrfritz, Soluble Normal Subgroups of Skew Linear Groups, J. Pure Appl. Algebra 42(5), 95107, 1986.
  • [20] B. A. F. Wehrfritz, Soluble and Locally Soluble Skew Linear Groups, Arch. Math. 49(5), 379388, 1987.
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Le Qui Danh 0000-0002-1429-8595

Project Number T2022-18-03
Early Pub Date August 15, 2023
Publication Date April 23, 2024
Published in Issue Year 2024

Cite

APA Qui Danh, L. (2024). Intersection graphs of quasinormal subgroups of general skew linear groups. Hacettepe Journal of Mathematics and Statistics, 53(2), 392-404. https://doi.org/10.15672/hujms.1249433
AMA Qui Danh L. Intersection graphs of quasinormal subgroups of general skew linear groups. Hacettepe Journal of Mathematics and Statistics. April 2024;53(2):392-404. doi:10.15672/hujms.1249433
Chicago Qui Danh, Le. “Intersection Graphs of Quasinormal Subgroups of General Skew Linear Groups”. Hacettepe Journal of Mathematics and Statistics 53, no. 2 (April 2024): 392-404. https://doi.org/10.15672/hujms.1249433.
EndNote Qui Danh L (April 1, 2024) Intersection graphs of quasinormal subgroups of general skew linear groups. Hacettepe Journal of Mathematics and Statistics 53 2 392–404.
IEEE L. Qui Danh, “Intersection graphs of quasinormal subgroups of general skew linear groups”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 2, pp. 392–404, 2024, doi: 10.15672/hujms.1249433.
ISNAD Qui Danh, Le. “Intersection Graphs of Quasinormal Subgroups of General Skew Linear Groups”. Hacettepe Journal of Mathematics and Statistics 53/2 (April 2024), 392-404. https://doi.org/10.15672/hujms.1249433.
JAMA Qui Danh L. Intersection graphs of quasinormal subgroups of general skew linear groups. Hacettepe Journal of Mathematics and Statistics. 2024;53:392–404.
MLA Qui Danh, Le. “Intersection Graphs of Quasinormal Subgroups of General Skew Linear Groups”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 2, 2024, pp. 392-04, doi:10.15672/hujms.1249433.
Vancouver Qui Danh L. Intersection graphs of quasinormal subgroups of general skew linear groups. Hacettepe Journal of Mathematics and Statistics. 2024;53(2):392-404.