Research Article
BibTex RIS Cite

Non-weak cut, non-block, shore, and non-strong center points of $F_n^K(X)$

Year 2026, Issue: Advanced Online Publication, 1 - 9
https://doi.org/10.15672/hujms.1451354

Abstract

Given a continuum $X$ and a positive integer $n$, $F_{n}(X)$ denotes the hyperspace of all nonempty subsets of $X$ with at most $n$ points endowed with the Hausdorff metric. For $K\in F_{n}(X)$, $F_{n}(K,X)$ denotes the set of all elements of $F_{n}(X)$ containing $K$. We will consider $F_{n}^K(X)$ the quotient space obtained from $F_{n}(X)$ by shrinking $F_{n}(K,X)$ to one point set, endowed with the quotient topology. In this paper, we study the relationship between some types of non-cut points of $F_{n}^{K}(X)$ and the condition of being of the same type of non-cut set over its preimages in $F_{n}(X)$ under the natural quotient map. The non-cut type sets considered here are: non-weak cut, non-block, shore, and non-strong center sets.

References

  • [1] J. G. Anaya and D. Maya, Non-cut ordered arcs of the hyperspace of subcontinua, Topology Appl. 349, 1-10, 108908, 2024.
There are 1 citations in total.

Details

Primary Language English
Subjects Topology
Journal Section Research Article
Authors

Roberto Carlos Mondragón Alvarez 0009-0004-9313-3079

Florencio Corona-vázquez 0000-0002-7024-9392

Russell-aaron Quinones-estrella 0000-0002-7347-4675

Javier Sánchez-martínez 0000-0002-1579-7273

Submission Date March 12, 2024
Acceptance Date May 13, 2025
Early Pub Date October 6, 2025
Published in Issue Year 2026 Issue: Advanced Online Publication

Cite

APA Mondragón Alvarez, R. C., Corona-vázquez, F., Quinones-estrella, R.- aaron, Sánchez-martínez, J. (2025). Non-weak cut, non-block, shore, and non-strong center points of $F_n^K(X)$. Hacettepe Journal of Mathematics and Statistics(Advanced Online Publication), 1-9. https://doi.org/10.15672/hujms.1451354
AMA Mondragón Alvarez RC, Corona-vázquez F, Quinones-estrella R aaron, Sánchez-martínez J. Non-weak cut, non-block, shore, and non-strong center points of $F_n^K(X)$. Hacettepe Journal of Mathematics and Statistics. October 2025;(Advanced Online Publication):1-9. doi:10.15672/hujms.1451354
Chicago Mondragón Alvarez, Roberto Carlos, Florencio Corona-vázquez, Russell-aaron Quinones-estrella, and Javier Sánchez-martínez. “Non-Weak Cut, Non-Block, Shore, and Non-Strong Center Points of $F_n^K(X)$”. Hacettepe Journal of Mathematics and Statistics, no. Advanced Online Publication (October 2025): 1-9. https://doi.org/10.15672/hujms.1451354.
EndNote Mondragón Alvarez RC, Corona-vázquez F, Quinones-estrella R- aaron, Sánchez-martínez J (October 1, 2025) Non-weak cut, non-block, shore, and non-strong center points of $F_n^K(X)$. Hacettepe Journal of Mathematics and Statistics Advanced Online Publication 1–9.
IEEE R. C. Mondragón Alvarez, F. Corona-vázquez, R.- aaron Quinones-estrella, and J. Sánchez-martínez, “Non-weak cut, non-block, shore, and non-strong center points of $F_n^K(X)$”, Hacettepe Journal of Mathematics and Statistics, no. Advanced Online Publication, pp. 1–9, October2025, doi: 10.15672/hujms.1451354.
ISNAD Mondragón Alvarez, Roberto Carlos et al. “Non-Weak Cut, Non-Block, Shore, and Non-Strong Center Points of $F_n^K(X)$”. Hacettepe Journal of Mathematics and Statistics Advanced Online Publication (October2025), 1-9. https://doi.org/10.15672/hujms.1451354.
JAMA Mondragón Alvarez RC, Corona-vázquez F, Quinones-estrella R- aaron, Sánchez-martínez J. Non-weak cut, non-block, shore, and non-strong center points of $F_n^K(X)$. Hacettepe Journal of Mathematics and Statistics. 2025;:1–9.
MLA Mondragón Alvarez, Roberto Carlos et al. “Non-Weak Cut, Non-Block, Shore, and Non-Strong Center Points of $F_n^K(X)$”. Hacettepe Journal of Mathematics and Statistics, no. Advanced Online Publication, 2025, pp. 1-9, doi:10.15672/hujms.1451354.
Vancouver Mondragón Alvarez RC, Corona-vázquez F, Quinones-estrella R- aaron, Sánchez-martínez J. Non-weak cut, non-block, shore, and non-strong center points of $F_n^K(X)$. Hacettepe Journal of Mathematics and Statistics. 2025(Advanced Online Publication):1-9.