Research Article
BibTex RIS Cite

The Bigamma function and some of its related inequalities

Year 2025, Volume: 54 Issue: 5, 1774 - 1782, 29.10.2025
https://doi.org/10.15672/hujms.1490373

Abstract

In this article, we define a special function called the Bigamma function. It provides a generalization of Euler's gamma function. Several algebraic properties of this new function are studied. In particular, results linking this new function to the standard Beta function have been provided. We have also established inequalities, which allow to approximate this new function.

References

  • [1] G. E. Andrews, R. Askey, and R. Roy, Special Functions, Cambridge University Press, 1999.
  • [2] R. Beals and R. Wong, Special Functions and Orthogonal Polynomials, Cambridge University Press, 2016.
  • [3] M. A. Chaudhry and S. M. Zubair, Generalized incomplete gamma functions with applications, J. Comput. Appl. Math. 55, 99-124, 1994.
  • [4] S. S. Dragomir, R. P. Agarwal, and N. S. Barnett, Inequalities for beta and gamma functions via some classical and new integral inequalities, J. Inequal. Appl. 5, 103-165, 2000.
  • [5] A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics, A Unified Introduction with Applications, Birkhäuser Boston, MA, 1988.
  • [6] F. W. J. Olver, Asymptotics and Special Functions, Academic Press Elsevier, 1974
  • [7] E. Özergin, M. A. Özarslan, and A. Altin, Extensions of gamma, beta and hypergeometric functions, J. Comput. Appl. Math. 235 (16), 4601-4610, 2011.
  • [8] M. Raïssouli and M. Chergui, Some inequalities for an extended beta function, Int. J. Appl. Math. 34 (4), 721-743, 2021.
  • [9] M. Raïssouli and M. Chergui, On some inequalities involving Beta-Logarithmic function, Gulf J. Math. 16 (1), 177-192, 2024.
  • [10] C. Viola, An Introduction to Special Functions, Springer Cham, 2016.
  • [11] D. G. Zill and M. R. Cullen, Advanced Engineering Mathematics, Jones and Bartlett, Boston 2005.

Year 2025, Volume: 54 Issue: 5, 1774 - 1782, 29.10.2025
https://doi.org/10.15672/hujms.1490373

Abstract

References

  • [1] G. E. Andrews, R. Askey, and R. Roy, Special Functions, Cambridge University Press, 1999.
  • [2] R. Beals and R. Wong, Special Functions and Orthogonal Polynomials, Cambridge University Press, 2016.
  • [3] M. A. Chaudhry and S. M. Zubair, Generalized incomplete gamma functions with applications, J. Comput. Appl. Math. 55, 99-124, 1994.
  • [4] S. S. Dragomir, R. P. Agarwal, and N. S. Barnett, Inequalities for beta and gamma functions via some classical and new integral inequalities, J. Inequal. Appl. 5, 103-165, 2000.
  • [5] A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics, A Unified Introduction with Applications, Birkhäuser Boston, MA, 1988.
  • [6] F. W. J. Olver, Asymptotics and Special Functions, Academic Press Elsevier, 1974
  • [7] E. Özergin, M. A. Özarslan, and A. Altin, Extensions of gamma, beta and hypergeometric functions, J. Comput. Appl. Math. 235 (16), 4601-4610, 2011.
  • [8] M. Raïssouli and M. Chergui, Some inequalities for an extended beta function, Int. J. Appl. Math. 34 (4), 721-743, 2021.
  • [9] M. Raïssouli and M. Chergui, On some inequalities involving Beta-Logarithmic function, Gulf J. Math. 16 (1), 177-192, 2024.
  • [10] C. Viola, An Introduction to Special Functions, Springer Cham, 2016.
  • [11] D. G. Zill and M. R. Cullen, Advanced Engineering Mathematics, Jones and Bartlett, Boston 2005.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Methods and Special Functions
Journal Section Research Article
Authors

Mustapha Raıssoulı 0000-0002-9467-3235

Chergui Mohamed 0000-0001-8077-2251

Early Pub Date April 11, 2025
Publication Date October 29, 2025
Submission Date May 26, 2024
Acceptance Date January 24, 2025
Published in Issue Year 2025 Volume: 54 Issue: 5

Cite

APA Raıssoulı, M., & Mohamed, C. (2025). The Bigamma function and some of its related inequalities. Hacettepe Journal of Mathematics and Statistics, 54(5), 1774-1782. https://doi.org/10.15672/hujms.1490373
AMA Raıssoulı M, Mohamed C. The Bigamma function and some of its related inequalities. Hacettepe Journal of Mathematics and Statistics. October 2025;54(5):1774-1782. doi:10.15672/hujms.1490373
Chicago Raıssoulı, Mustapha, and Chergui Mohamed. “The Bigamma Function and Some of Its Related Inequalities”. Hacettepe Journal of Mathematics and Statistics 54, no. 5 (October 2025): 1774-82. https://doi.org/10.15672/hujms.1490373.
EndNote Raıssoulı M, Mohamed C (October 1, 2025) The Bigamma function and some of its related inequalities. Hacettepe Journal of Mathematics and Statistics 54 5 1774–1782.
IEEE M. Raıssoulı and C. Mohamed, “The Bigamma function and some of its related inequalities”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 5, pp. 1774–1782, 2025, doi: 10.15672/hujms.1490373.
ISNAD Raıssoulı, Mustapha - Mohamed, Chergui. “The Bigamma Function and Some of Its Related Inequalities”. Hacettepe Journal of Mathematics and Statistics 54/5 (October2025), 1774-1782. https://doi.org/10.15672/hujms.1490373.
JAMA Raıssoulı M, Mohamed C. The Bigamma function and some of its related inequalities. Hacettepe Journal of Mathematics and Statistics. 2025;54:1774–1782.
MLA Raıssoulı, Mustapha and Chergui Mohamed. “The Bigamma Function and Some of Its Related Inequalities”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 5, 2025, pp. 1774-82, doi:10.15672/hujms.1490373.
Vancouver Raıssoulı M, Mohamed C. The Bigamma function and some of its related inequalities. Hacettepe Journal of Mathematics and Statistics. 2025;54(5):1774-82.