Research Article
BibTex RIS Cite

An expression for zeta values and a summation formula via hyperbolic secant random variables

Year 2025, Volume: 54 Issue: 5, 1897 - 1904, 29.10.2025
https://doi.org/10.15672/hujms.1592384

Abstract

The aim of this paper is to derive a summation formula for the series $\sum_{k=0}^{\infty} \frac{(-1)^{k}} {(2k+1)^{2n+1}}$ and an expression for $\zeta(2n+2)$ by using hyperbolic secant random variables. These identities involve Euler numbers and are obtained by computing the moments of the random variable and the moments of the sum of two independent such random variables.

References

  • [1] J. A. Adell, B. Bényi, Probabilistic Stirling numbers and applications, Aequationes Math. 98, no. 6, 1627-1646, 2024.
  • [2] L. Comtet, Advanced combinatorics. The art of finite and infinite expansions, Revised and enlarged edition, D. Reidel Publishing Co., Dordrecht, 1974.
  • [3] L. Holst, Probabilistic proofs of Euler identities, J. Appl. Probab. 50, no. 4, 1206-1212, 2013.
  • [4] T. Kim, Euler numbers and polynomials associated with zeta functions, Abstr. Appl. Anal., Art. ID 581582, 11 pp., 2008.
  • [5] T. Kim, D. S. Kim, Generalization of Spivey’s recurrence relation, Russ. J. Math. Phys. 31, no. 2, 218 -226, 2024.
  • [6] T. Kim, D. S. Kim, Explicit formulas related to Euler’s product expansion for cosine function, arXiv:2407.19885.
  • [7] T. Kim, D. S. Kim, Probabilistic Bernoulli and Euler polynomials, Russ. J. Math. Phys. 31, no. 1, 94-105, 2024.
  • [8] D. S. Kim, T. Kim, Moment representations of fully degenerate Bernoulli and degenerate Euler polynomials, Russ. J. Math. Phys. 31, no. 4, 682–690, 2024.
  • [9] T. Kim, D. S. Kim, Probabilistic degenerate Bell polynomials associated with random variables, Russ. J. Math. Phys. 30, no. 4, 528–542, 2023.
  • [10] S. M. Ross, Introduction to probability models, Thirteenth edition, Academic Press, London, 2024. .
  • [11] R. Soni, P. Vellaisamy, A. K. Pathak, A probabilistic generalization of the Bell polynomials, J. Anal. 32, no. 2, 711-732, 2024.
  • [12] R. P. Stanley, Euler numbers, https://math.mit.edu > rstan.
  • [13] E. T. Whittaker, G. N.Watson, G. N. A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions: with an account of the principal transcendental functions, Fourth edition, Reprinted, Cambridge University Press, New York, 1962.

Year 2025, Volume: 54 Issue: 5, 1897 - 1904, 29.10.2025
https://doi.org/10.15672/hujms.1592384

Abstract

References

  • [1] J. A. Adell, B. Bényi, Probabilistic Stirling numbers and applications, Aequationes Math. 98, no. 6, 1627-1646, 2024.
  • [2] L. Comtet, Advanced combinatorics. The art of finite and infinite expansions, Revised and enlarged edition, D. Reidel Publishing Co., Dordrecht, 1974.
  • [3] L. Holst, Probabilistic proofs of Euler identities, J. Appl. Probab. 50, no. 4, 1206-1212, 2013.
  • [4] T. Kim, Euler numbers and polynomials associated with zeta functions, Abstr. Appl. Anal., Art. ID 581582, 11 pp., 2008.
  • [5] T. Kim, D. S. Kim, Generalization of Spivey’s recurrence relation, Russ. J. Math. Phys. 31, no. 2, 218 -226, 2024.
  • [6] T. Kim, D. S. Kim, Explicit formulas related to Euler’s product expansion for cosine function, arXiv:2407.19885.
  • [7] T. Kim, D. S. Kim, Probabilistic Bernoulli and Euler polynomials, Russ. J. Math. Phys. 31, no. 1, 94-105, 2024.
  • [8] D. S. Kim, T. Kim, Moment representations of fully degenerate Bernoulli and degenerate Euler polynomials, Russ. J. Math. Phys. 31, no. 4, 682–690, 2024.
  • [9] T. Kim, D. S. Kim, Probabilistic degenerate Bell polynomials associated with random variables, Russ. J. Math. Phys. 30, no. 4, 528–542, 2023.
  • [10] S. M. Ross, Introduction to probability models, Thirteenth edition, Academic Press, London, 2024. .
  • [11] R. Soni, P. Vellaisamy, A. K. Pathak, A probabilistic generalization of the Bell polynomials, J. Anal. 32, no. 2, 711-732, 2024.
  • [12] R. P. Stanley, Euler numbers, https://math.mit.edu > rstan.
  • [13] E. T. Whittaker, G. N.Watson, G. N. A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions: with an account of the principal transcendental functions, Fourth edition, Reprinted, Cambridge University Press, New York, 1962.
There are 13 citations in total.

Details

Primary Language English
Subjects Probability Theory, Algebra and Number Theory
Journal Section Research Article
Authors

Tae-kyun Kım 0000-0002-3731-7023

Dae San Kim 0000-0001-9599-7015

Early Pub Date April 11, 2025
Publication Date October 29, 2025
Submission Date November 27, 2024
Acceptance Date February 23, 2025
Published in Issue Year 2025 Volume: 54 Issue: 5

Cite

APA Kım, T.- kyun, & Kim, D. S. (2025). An expression for zeta values and a summation formula via hyperbolic secant random variables. Hacettepe Journal of Mathematics and Statistics, 54(5), 1897-1904. https://doi.org/10.15672/hujms.1592384
AMA Kım T kyun, Kim DS. An expression for zeta values and a summation formula via hyperbolic secant random variables. Hacettepe Journal of Mathematics and Statistics. October 2025;54(5):1897-1904. doi:10.15672/hujms.1592384
Chicago Kım, Tae-kyun, and Dae San Kim. “An Expression for Zeta Values and a Summation Formula via Hyperbolic Secant Random Variables”. Hacettepe Journal of Mathematics and Statistics 54, no. 5 (October 2025): 1897-1904. https://doi.org/10.15672/hujms.1592384.
EndNote Kım T- kyun, Kim DS (October 1, 2025) An expression for zeta values and a summation formula via hyperbolic secant random variables. Hacettepe Journal of Mathematics and Statistics 54 5 1897–1904.
IEEE T.- kyun Kım and D. S. Kim, “An expression for zeta values and a summation formula via hyperbolic secant random variables”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 5, pp. 1897–1904, 2025, doi: 10.15672/hujms.1592384.
ISNAD Kım, Tae-kyun - Kim, Dae San. “An Expression for Zeta Values and a Summation Formula via Hyperbolic Secant Random Variables”. Hacettepe Journal of Mathematics and Statistics 54/5 (October2025), 1897-1904. https://doi.org/10.15672/hujms.1592384.
JAMA Kım T- kyun, Kim DS. An expression for zeta values and a summation formula via hyperbolic secant random variables. Hacettepe Journal of Mathematics and Statistics. 2025;54:1897–1904.
MLA Kım, Tae-kyun and Dae San Kim. “An Expression for Zeta Values and a Summation Formula via Hyperbolic Secant Random Variables”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 5, 2025, pp. 1897-04, doi:10.15672/hujms.1592384.
Vancouver Kım T- kyun, Kim DS. An expression for zeta values and a summation formula via hyperbolic secant random variables. Hacettepe Journal of Mathematics and Statistics. 2025;54(5):1897-904.