The aim of this paper is to derive a summation formula for the series $\sum_{k=0}^{\infty} \frac{(-1)^{k}} {(2k+1)^{2n+1}}$ and an expression for $\zeta(2n+2)$ by using hyperbolic secant random variables. These identities involve Euler numbers and are obtained by computing the moments of the random variable and the moments of the sum of two independent such random variables.
[1] J. A. Adell, B. Bényi, Probabilistic Stirling numbers and applications, Aequationes
Math. 98, no. 6, 1627-1646, 2024.
[2] L. Comtet, Advanced combinatorics. The art of finite and infinite expansions, Revised
and enlarged edition, D. Reidel Publishing Co., Dordrecht, 1974.
[3] L. Holst, Probabilistic proofs of Euler identities, J. Appl. Probab. 50, no. 4, 1206-1212,
2013.
[4] T. Kim, Euler numbers and polynomials associated with zeta functions, Abstr. Appl.
Anal., Art. ID 581582, 11 pp., 2008.
[5] T. Kim, D. S. Kim, Generalization of Spivey’s recurrence relation, Russ. J. Math.
Phys. 31, no. 2, 218 -226, 2024.
[6] T. Kim, D. S. Kim, Explicit formulas related to Euler’s product expansion for cosine
function, arXiv:2407.19885.
[7] T. Kim, D. S. Kim, Probabilistic Bernoulli and Euler polynomials, Russ. J. Math.
Phys. 31, no. 1, 94-105, 2024.
[8] D. S. Kim, T. Kim, Moment representations of fully degenerate Bernoulli and degenerate
Euler polynomials, Russ. J. Math. Phys. 31, no. 4, 682–690, 2024.
[9] T. Kim, D. S. Kim, Probabilistic degenerate Bell polynomials associated with random
variables, Russ. J. Math. Phys. 30, no. 4, 528–542, 2023.
[10] S. M. Ross, Introduction to probability models, Thirteenth edition, Academic Press,
London, 2024. .
[11] R. Soni, P. Vellaisamy, A. K. Pathak, A probabilistic generalization of the Bell polynomials,
J. Anal. 32, no. 2, 711-732, 2024.
[12] R. P. Stanley, Euler numbers, https://math.mit.edu > rstan.
[13] E. T. Whittaker, G. N.Watson, G. N. A course of modern analysis. An introduction to
the general theory of infinite processes and of analytic functions: with an account of the
principal transcendental functions, Fourth edition, Reprinted, Cambridge University
Press, New York, 1962.
Add To My Library
Year 2025,
Volume: 54 Issue: 5, 1897 - 1904, 29.10.2025
[1] J. A. Adell, B. Bényi, Probabilistic Stirling numbers and applications, Aequationes
Math. 98, no. 6, 1627-1646, 2024.
[2] L. Comtet, Advanced combinatorics. The art of finite and infinite expansions, Revised
and enlarged edition, D. Reidel Publishing Co., Dordrecht, 1974.
[3] L. Holst, Probabilistic proofs of Euler identities, J. Appl. Probab. 50, no. 4, 1206-1212,
2013.
[4] T. Kim, Euler numbers and polynomials associated with zeta functions, Abstr. Appl.
Anal., Art. ID 581582, 11 pp., 2008.
[5] T. Kim, D. S. Kim, Generalization of Spivey’s recurrence relation, Russ. J. Math.
Phys. 31, no. 2, 218 -226, 2024.
[6] T. Kim, D. S. Kim, Explicit formulas related to Euler’s product expansion for cosine
function, arXiv:2407.19885.
[7] T. Kim, D. S. Kim, Probabilistic Bernoulli and Euler polynomials, Russ. J. Math.
Phys. 31, no. 1, 94-105, 2024.
[8] D. S. Kim, T. Kim, Moment representations of fully degenerate Bernoulli and degenerate
Euler polynomials, Russ. J. Math. Phys. 31, no. 4, 682–690, 2024.
[9] T. Kim, D. S. Kim, Probabilistic degenerate Bell polynomials associated with random
variables, Russ. J. Math. Phys. 30, no. 4, 528–542, 2023.
[10] S. M. Ross, Introduction to probability models, Thirteenth edition, Academic Press,
London, 2024. .
[11] R. Soni, P. Vellaisamy, A. K. Pathak, A probabilistic generalization of the Bell polynomials,
J. Anal. 32, no. 2, 711-732, 2024.
[12] R. P. Stanley, Euler numbers, https://math.mit.edu > rstan.
[13] E. T. Whittaker, G. N.Watson, G. N. A course of modern analysis. An introduction to
the general theory of infinite processes and of analytic functions: with an account of the
principal transcendental functions, Fourth edition, Reprinted, Cambridge University
Press, New York, 1962.
Kım, T.- kyun, & Kim, D. S. (2025). An expression for zeta values and a summation formula via hyperbolic secant random variables. Hacettepe Journal of Mathematics and Statistics, 54(5), 1897-1904. https://doi.org/10.15672/hujms.1592384
AMA
Kım T kyun, Kim DS. An expression for zeta values and a summation formula via hyperbolic secant random variables. Hacettepe Journal of Mathematics and Statistics. October 2025;54(5):1897-1904. doi:10.15672/hujms.1592384
Chicago
Kım, Tae-kyun, and Dae San Kim. “An Expression for Zeta Values and a Summation Formula via Hyperbolic Secant Random Variables”. Hacettepe Journal of Mathematics and Statistics 54, no. 5 (October 2025): 1897-1904. https://doi.org/10.15672/hujms.1592384.
EndNote
Kım T- kyun, Kim DS (October 1, 2025) An expression for zeta values and a summation formula via hyperbolic secant random variables. Hacettepe Journal of Mathematics and Statistics 54 5 1897–1904.
IEEE
T.- kyun Kım and D. S. Kim, “An expression for zeta values and a summation formula via hyperbolic secant random variables”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 5, pp. 1897–1904, 2025, doi: 10.15672/hujms.1592384.
ISNAD
Kım, Tae-kyun - Kim, Dae San. “An Expression for Zeta Values and a Summation Formula via Hyperbolic Secant Random Variables”. Hacettepe Journal of Mathematics and Statistics 54/5 (October2025), 1897-1904. https://doi.org/10.15672/hujms.1592384.
JAMA
Kım T- kyun, Kim DS. An expression for zeta values and a summation formula via hyperbolic secant random variables. Hacettepe Journal of Mathematics and Statistics. 2025;54:1897–1904.
MLA
Kım, Tae-kyun and Dae San Kim. “An Expression for Zeta Values and a Summation Formula via Hyperbolic Secant Random Variables”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 5, 2025, pp. 1897-04, doi:10.15672/hujms.1592384.
Vancouver
Kım T- kyun, Kim DS. An expression for zeta values and a summation formula via hyperbolic secant random variables. Hacettepe Journal of Mathematics and Statistics. 2025;54(5):1897-904.