Research Article
BibTex RIS Cite

Year 2025, Volume: 54 Issue: 5, 1976 - 2006, 29.10.2025
https://doi.org/10.15672/hujms.1696033

Abstract

Project Number

NIL

References

  • [1] P. Rajadurai, A study on M/G/1 preemptive priority retrial queue with Bernoulli working vacations and vacation interruption , Int. J. Process Manag. Benchmark. 9 (2), 193-215, 2019.
  • [2] T. Li, L. Zhang and S. Gao, An M/G/1 retrial queue with balking customers and Bernoulli working vacation interruption, Qual. Technol. Quant. Manag. 16 (5), 511- 530, 2019.
  • [3] S. Keerthiga and K. Indhira, Cost optimization for system stability and orbital search under working vacation and starting failure by using the ANFIS soft computing, Ain Shams Eng. J. 15, 102-847, 2024.
  • [4] M. GnanaSekar and I. Kandaiyan, Analysis of an M/G/1 retrial queue with delayed repair and feedback under working vacation policy with impatient customers , Symmetry, 14 (10), 2022.
  • [5] S. Sundarapandiyan and S. Nandhini, Non-Markovian Feedback Retrial Queue with Two Types of Customers and Delayed Repair Under Bernoulli Working Vacation , Contemp. Math. 5 (2), 2093-2122, 2024.
  • [6] N. Sivasubramaniam and B. Jagannathan, Bulk Arrival queue with Unreliable Server, Balking and Modified Bernoulli Vacation, Hacet. J. Math. Stat. 53 (1), 289 304, 2024.
  • [7] N. Dehamnia, M. Boualem and D. Aïssani, Performance and economic analysis of an unreliable single-server queue with general retrial times and varied customer patience levels, Hacet. J. Math. Stat. 54 (2), 128, 2025.
  • [8] N. Dehamnia, M. Boualem and D. Aïssani, Performance of an unreliable retrial queue with two types of customer arrivals and service orbit, Yugosl. J. Oper. Res. 00, 16-16, 2025.
  • [9] D. Arivudainambi and P. Godhandaraman, A batch arrival retrialqueue with two phases of service, feedback and k-optional vacations, Appl. Math. Sci. 6 (22), 10711087, 2012.
  • [10] J. C. Ke, T. H. Liu, S. Su and Z. G. Zhang, On retrial queue with customer balking and feedback subject to server breakdowns, Commun. Stat. Theory Methods. 51 (17), 6049-6063, 2022.
  • [11] R. P. Nithya and M. Haridass, Stochastic modelling and analysis of maximum entropy of MX/G/1 queuing system with balking, startup and vacation interruption, Int. J. Serv. Oper. 37 (3), 343-371, 2020.
  • [12] M. Boualem, Stochastic analysis of a single server unreliable queue with balking and general retrial time, Discrete Contin. Models Appl. Comput. Sci.28 (4), 319-326, 2020.
  • [13] A. A. Bouchentouf, L. Medjahri, M. Boualem and A.Kumar, Mathematical analysis of a Markovian multi-server feedback queue with a variant of multiple vacations, balking and reneging, Discrete Contin. Models Appl. Comput. Sci. 30 (1), 21-38, 2022.
  • [14] A. A. Bouchentouf, M. Boualem, M. Cherfaoui and L. Medjahri, Variant vacation queueing system with Bernoulli feedback, balking and server’s states-dependent reneging , YUJOR 31 (4), 557-575, 2021.
  • [15] K. C. Madan, D. Al-Nasser Amjad and A.Q. Al-Masri, On M[x]/(G1,G2)/1 queue with optional re-service, Appl. Math Comput. 152 (1), 7188, 2024.
  • [16] M. Baruah, K. C. Madan and T. Eldabi, Balking and re-service in a vacation queue with batch arrival and two types of heterogeneous service, J. Math. Res. 4 (4), 114124, 2012.
  • [17] P. Rajadurai, M. C. Saravanarajan and V. M. Chandrasekaran, Analysis of an M[X]/(G1,G2)/1 retrial queueing system with balking, optional re-service under modified vacation policy and service interruption, Ain Shams Eng. J. 5 (3), 935950, 2014.
  • [18] A.A Bouchentouf, M. Cherfaoui and M. Boualem, Performance and economic analysis of a single server feedback queueing model with vacation and impatient customers, Opsearch 56 (1), 300-323, 2019.
  • [19] V. Saravanan, V. Poongothai and P. Godhandaraman, Performance analysis of a retrial queueing system with optional service, unreliable server, balking and feedback, Int. J. Math. Eng. Manag. Sci. 8 (4), 769, 2023.
  • [20] M. Boualem, A. A Bouchentouf, A. Bareche and M. Cherfaoui, Stochastic interpretation for a single server retrial queue with Bernoulli feedback and negative customers. Applied Mathematics-A Journal of Chinese Universities 40 (1), 1-19, 2025
  • [21] A. A Bouchentouf, M. Boualem, L. Yahiaoui and H. Ahmad, A multi-station unreliable machine model with working vacation policy and customers impatience, Qual. Technol. Quant. Manag. 19 (6), 766796, 2022.
  • [22] M. Cherfaoui, A. A. Bouchentouf and M. Boualem, Modelling and simulation of Bernoulli feedback queue with general customers’ impatience under variant vacation policy, Int. J. Oper. Res. 46 (4), 451-480, 2023.
  • [23] A. Chettouf, A. A. Bouchentouf and M. Boualem, A Markovian Queueing Model for Telecommunications Support Center with Breakdowns and Vacation Periods, In Oper. Res. 5 (1), 22, 2024.
  • [24] A. Dehimi, M. Boualem, A. A Bouchentouf, S. Ziani and L. Berdjoudj, Analytical and Computational Aspects of a Multi-Server Queue With Impatience Under Differentiated Working Vacations Policy. Reliab. Theory Appl. 19 (79), 393-407, 2024.
  • [25] B. Shanmugam and M. C. Saravanarajan, Unreliable retrial queueing system with working vacation, AIMS Math. 8 (10), 24196-24224, 2023.
  • [26] N. M. Mathavavisakan and K. Indhira, Nonlinear metaheuristic cost optimization and ANFIS computing of feedback retrial queue with two dependent phases of service under Bernoulli working vacation, Int. J. Mod. Phys. B. 38 (30), 2440004, 2024.
  • [27] K. Abir, T. Nassim, A. A. Bouchentouf and B. Mohamed, Finite-capacity M/M/2 machine repair model with impatient customers, triadic discipline, and two working vacation policies. Journal of Mathematical Modeling 13 (1), 2025.
  • [28] M. Vaishnawi, S. Upadhyaya and R. Kulshrestha Optimal cost analysis for discretetime recurrent queue with bernoulli feedback and emergency vacation. Int. J .Appl. Comput Math. 8 (5), 254, 2022.
  • [29] A. Kumar and M. Jain, Cost optimization of an unreliable server queue with two stage service process under hybrid vacation policy, Math. Comput. Simul. 204 259281, 2023.
  • [30] R. Harini and K. Indhira, Meta heuristic optimization of a batch arrival retrial queue with optional re-service and M-optional vacations , Int. J. Syst. Assur. Eng. Manag. 15 (9), 4252-4282, 2024.
  • [31] A. Kumar, M. Boualem and A. A. Bouchentouf, Optimal analysis of machine interference problem with standby, random switching failure, vacation interruption and synchronized reneging, Appl. Adv. Optim. Tech. Ind. Eng. 155-168, 2022.
  • [32] A. Kumar, A. A. Bouchentouf and M. Boualem; Cost Optimisation Analysis for a Markovian Feedback Queueing System with Discouragement, Breakdown, and Threshold based Recovery Policy, Optim. Tech. Decis. Mak. Inf. Secur. Comput. Intell. Data Anal. 3 (1), 1–17, 2024.
  • [33] A.Dehmi, M.Boualem, S.Kahla and L. Berdjoudj, ANFIS computing and cost optimization of an M/M/c/M queue with feedback and balking customers under a hybrid hiatus policy. Croatian Operational Research Review 15 (2), 159-170. 2024.
  • [34] M. Jain and A. Jain, Genetic algorithm in retrial queueing system with server breakdown and caller intolerance with voluntary service. Int. J. Syst. Assur. Eng. Manag. 13(2), 582-598, 2022.
  • [35] G. Malik, S. Upadhyaya and R. Sharma, Cost inspection of a Geo/G/1 retrial model using particle swarm optimization and genetic algorithm. Ain Shams Eng. J. 12(2): 2241-2254, (2021).
  • [36] A.G. Pakes, Some conditions for ergodicity and recurrence of Markov chains. Oper. Res. 17, 1058-1061, 1969.
  • [37] L. I. Sennott, P. A. Humblet and R. L. Tweedie, Mean drifts and the non-ergodicity of Markov chains, Oper. Res. 31 (4), 783-789, 1983.
  • [38] P. Rajadurai, M. Saravanarajan and V. Chandrasekaran, A single server retrial queue with bernoulli working vacation and vacation interruption. Int. J. Appl. Eng. Res. 11 (1), 2016.
  • [39] D. Arivudainambi, P. Godhandaraman and P.Rajadurai, Performance analysis of a single server retrial queue with working vacation. Opsearch 51(3), 434-462, 2014.
  • [40] J.Kennedy and R. Eberhart, Particle swarm optimization, ieee. 4, 1942–1948, 1995.
  • [41] S. Upadhyaya, Cost optimisation of a discrete-time retrial queue with Bernoulli feedback and starting failure. Int. J. Ind. Syst. Eng. 36 (2), 165-196, 2020.
  • [42] X. Zhang, J. Wang and Q. Ma, Optimal design for a retrial queueing system with state-dependent service rate J. Syst. Sci. Complex. 30 (4), 883-900, 2017.
  • [43] G. Malik, S. Upadhyaya and R. Sharma, Cost inspection of a Geo/G/1 retrial model using particle swarm optimization and Genetic algorithm , Ain Shams Eng. J. 12 (2), 2241-2254, 2021.
  • [44] R. Harini, and K. Indhira, Dynamical behaviour and meta heuristic optimization of a hospital management software system, Heliyon. 10 (16), 2024.
  • [45] J. H. Holland, Adaptation in natural and artificial systems, Univ. of Mich. Press 2, 29-41, 1975.
  • [46] N. M. Mathavavisakan and K. Indhira, Nonlinear metaheuristic cost optimization and ANFIS computing of feedback retrial queue with two dependent phases of service under Bernoulli working vacation, Int. J. Mod. Phys. B. 38(30), 2440004, 2024.
  • [47] M. Jain and S. Dhibar, ANFIS and metaheuristic optimization for strategic joining policy with re-attempt and vacation. Math. Comput. Simul. 211, 57-84, 2023.

Particle swarm optimization of a single server retrial queue with balking and immediate feedback under Bernoulli working vacation

Year 2025, Volume: 54 Issue: 5, 1976 - 2006, 29.10.2025
https://doi.org/10.15672/hujms.1696033

Abstract

In this study, we investigate a single-server retrial queueing system that incorporates balking, immediate feedback, and a Bernoulli working vacation policy. Customers arriving to find the server busy, under repair, or on working vacation may balk; otherwise, they either join the orbit or receive immediate service if the server is available. Upon completion of the service, the customer can request a finite number of immediate feedback services. When the orbit is empty after the completion of a service, the server initiates a working vacation, serving at a reduced rate. If customers are present in the orbit at the end of the vacation, the server resumes normal operation. If the system is empty, the server remains idle or continues the vacation. We analyze the ergodicity conditions to ensure system stability and derive the stationary distribution of the underlying Markov process. Several key performance measures are computed. Furthermore, a comprehensive cost function is developed and optimized using metaheuristic approaches, including particle swarm optimization and the genetic algorithm. The convergence behavior and optimization results are illustrated through graphical analysis, offering insight into improving the efficiency of complex retrial queueing systems.

Ethical Statement

NIL

Supporting Institution

VIT, Vellore, Tamil Nadu, India.

Project Number

NIL

References

  • [1] P. Rajadurai, A study on M/G/1 preemptive priority retrial queue with Bernoulli working vacations and vacation interruption , Int. J. Process Manag. Benchmark. 9 (2), 193-215, 2019.
  • [2] T. Li, L. Zhang and S. Gao, An M/G/1 retrial queue with balking customers and Bernoulli working vacation interruption, Qual. Technol. Quant. Manag. 16 (5), 511- 530, 2019.
  • [3] S. Keerthiga and K. Indhira, Cost optimization for system stability and orbital search under working vacation and starting failure by using the ANFIS soft computing, Ain Shams Eng. J. 15, 102-847, 2024.
  • [4] M. GnanaSekar and I. Kandaiyan, Analysis of an M/G/1 retrial queue with delayed repair and feedback under working vacation policy with impatient customers , Symmetry, 14 (10), 2022.
  • [5] S. Sundarapandiyan and S. Nandhini, Non-Markovian Feedback Retrial Queue with Two Types of Customers and Delayed Repair Under Bernoulli Working Vacation , Contemp. Math. 5 (2), 2093-2122, 2024.
  • [6] N. Sivasubramaniam and B. Jagannathan, Bulk Arrival queue with Unreliable Server, Balking and Modified Bernoulli Vacation, Hacet. J. Math. Stat. 53 (1), 289 304, 2024.
  • [7] N. Dehamnia, M. Boualem and D. Aïssani, Performance and economic analysis of an unreliable single-server queue with general retrial times and varied customer patience levels, Hacet. J. Math. Stat. 54 (2), 128, 2025.
  • [8] N. Dehamnia, M. Boualem and D. Aïssani, Performance of an unreliable retrial queue with two types of customer arrivals and service orbit, Yugosl. J. Oper. Res. 00, 16-16, 2025.
  • [9] D. Arivudainambi and P. Godhandaraman, A batch arrival retrialqueue with two phases of service, feedback and k-optional vacations, Appl. Math. Sci. 6 (22), 10711087, 2012.
  • [10] J. C. Ke, T. H. Liu, S. Su and Z. G. Zhang, On retrial queue with customer balking and feedback subject to server breakdowns, Commun. Stat. Theory Methods. 51 (17), 6049-6063, 2022.
  • [11] R. P. Nithya and M. Haridass, Stochastic modelling and analysis of maximum entropy of MX/G/1 queuing system with balking, startup and vacation interruption, Int. J. Serv. Oper. 37 (3), 343-371, 2020.
  • [12] M. Boualem, Stochastic analysis of a single server unreliable queue with balking and general retrial time, Discrete Contin. Models Appl. Comput. Sci.28 (4), 319-326, 2020.
  • [13] A. A. Bouchentouf, L. Medjahri, M. Boualem and A.Kumar, Mathematical analysis of a Markovian multi-server feedback queue with a variant of multiple vacations, balking and reneging, Discrete Contin. Models Appl. Comput. Sci. 30 (1), 21-38, 2022.
  • [14] A. A. Bouchentouf, M. Boualem, M. Cherfaoui and L. Medjahri, Variant vacation queueing system with Bernoulli feedback, balking and server’s states-dependent reneging , YUJOR 31 (4), 557-575, 2021.
  • [15] K. C. Madan, D. Al-Nasser Amjad and A.Q. Al-Masri, On M[x]/(G1,G2)/1 queue with optional re-service, Appl. Math Comput. 152 (1), 7188, 2024.
  • [16] M. Baruah, K. C. Madan and T. Eldabi, Balking and re-service in a vacation queue with batch arrival and two types of heterogeneous service, J. Math. Res. 4 (4), 114124, 2012.
  • [17] P. Rajadurai, M. C. Saravanarajan and V. M. Chandrasekaran, Analysis of an M[X]/(G1,G2)/1 retrial queueing system with balking, optional re-service under modified vacation policy and service interruption, Ain Shams Eng. J. 5 (3), 935950, 2014.
  • [18] A.A Bouchentouf, M. Cherfaoui and M. Boualem, Performance and economic analysis of a single server feedback queueing model with vacation and impatient customers, Opsearch 56 (1), 300-323, 2019.
  • [19] V. Saravanan, V. Poongothai and P. Godhandaraman, Performance analysis of a retrial queueing system with optional service, unreliable server, balking and feedback, Int. J. Math. Eng. Manag. Sci. 8 (4), 769, 2023.
  • [20] M. Boualem, A. A Bouchentouf, A. Bareche and M. Cherfaoui, Stochastic interpretation for a single server retrial queue with Bernoulli feedback and negative customers. Applied Mathematics-A Journal of Chinese Universities 40 (1), 1-19, 2025
  • [21] A. A Bouchentouf, M. Boualem, L. Yahiaoui and H. Ahmad, A multi-station unreliable machine model with working vacation policy and customers impatience, Qual. Technol. Quant. Manag. 19 (6), 766796, 2022.
  • [22] M. Cherfaoui, A. A. Bouchentouf and M. Boualem, Modelling and simulation of Bernoulli feedback queue with general customers’ impatience under variant vacation policy, Int. J. Oper. Res. 46 (4), 451-480, 2023.
  • [23] A. Chettouf, A. A. Bouchentouf and M. Boualem, A Markovian Queueing Model for Telecommunications Support Center with Breakdowns and Vacation Periods, In Oper. Res. 5 (1), 22, 2024.
  • [24] A. Dehimi, M. Boualem, A. A Bouchentouf, S. Ziani and L. Berdjoudj, Analytical and Computational Aspects of a Multi-Server Queue With Impatience Under Differentiated Working Vacations Policy. Reliab. Theory Appl. 19 (79), 393-407, 2024.
  • [25] B. Shanmugam and M. C. Saravanarajan, Unreliable retrial queueing system with working vacation, AIMS Math. 8 (10), 24196-24224, 2023.
  • [26] N. M. Mathavavisakan and K. Indhira, Nonlinear metaheuristic cost optimization and ANFIS computing of feedback retrial queue with two dependent phases of service under Bernoulli working vacation, Int. J. Mod. Phys. B. 38 (30), 2440004, 2024.
  • [27] K. Abir, T. Nassim, A. A. Bouchentouf and B. Mohamed, Finite-capacity M/M/2 machine repair model with impatient customers, triadic discipline, and two working vacation policies. Journal of Mathematical Modeling 13 (1), 2025.
  • [28] M. Vaishnawi, S. Upadhyaya and R. Kulshrestha Optimal cost analysis for discretetime recurrent queue with bernoulli feedback and emergency vacation. Int. J .Appl. Comput Math. 8 (5), 254, 2022.
  • [29] A. Kumar and M. Jain, Cost optimization of an unreliable server queue with two stage service process under hybrid vacation policy, Math. Comput. Simul. 204 259281, 2023.
  • [30] R. Harini and K. Indhira, Meta heuristic optimization of a batch arrival retrial queue with optional re-service and M-optional vacations , Int. J. Syst. Assur. Eng. Manag. 15 (9), 4252-4282, 2024.
  • [31] A. Kumar, M. Boualem and A. A. Bouchentouf, Optimal analysis of machine interference problem with standby, random switching failure, vacation interruption and synchronized reneging, Appl. Adv. Optim. Tech. Ind. Eng. 155-168, 2022.
  • [32] A. Kumar, A. A. Bouchentouf and M. Boualem; Cost Optimisation Analysis for a Markovian Feedback Queueing System with Discouragement, Breakdown, and Threshold based Recovery Policy, Optim. Tech. Decis. Mak. Inf. Secur. Comput. Intell. Data Anal. 3 (1), 1–17, 2024.
  • [33] A.Dehmi, M.Boualem, S.Kahla and L. Berdjoudj, ANFIS computing and cost optimization of an M/M/c/M queue with feedback and balking customers under a hybrid hiatus policy. Croatian Operational Research Review 15 (2), 159-170. 2024.
  • [34] M. Jain and A. Jain, Genetic algorithm in retrial queueing system with server breakdown and caller intolerance with voluntary service. Int. J. Syst. Assur. Eng. Manag. 13(2), 582-598, 2022.
  • [35] G. Malik, S. Upadhyaya and R. Sharma, Cost inspection of a Geo/G/1 retrial model using particle swarm optimization and genetic algorithm. Ain Shams Eng. J. 12(2): 2241-2254, (2021).
  • [36] A.G. Pakes, Some conditions for ergodicity and recurrence of Markov chains. Oper. Res. 17, 1058-1061, 1969.
  • [37] L. I. Sennott, P. A. Humblet and R. L. Tweedie, Mean drifts and the non-ergodicity of Markov chains, Oper. Res. 31 (4), 783-789, 1983.
  • [38] P. Rajadurai, M. Saravanarajan and V. Chandrasekaran, A single server retrial queue with bernoulli working vacation and vacation interruption. Int. J. Appl. Eng. Res. 11 (1), 2016.
  • [39] D. Arivudainambi, P. Godhandaraman and P.Rajadurai, Performance analysis of a single server retrial queue with working vacation. Opsearch 51(3), 434-462, 2014.
  • [40] J.Kennedy and R. Eberhart, Particle swarm optimization, ieee. 4, 1942–1948, 1995.
  • [41] S. Upadhyaya, Cost optimisation of a discrete-time retrial queue with Bernoulli feedback and starting failure. Int. J. Ind. Syst. Eng. 36 (2), 165-196, 2020.
  • [42] X. Zhang, J. Wang and Q. Ma, Optimal design for a retrial queueing system with state-dependent service rate J. Syst. Sci. Complex. 30 (4), 883-900, 2017.
  • [43] G. Malik, S. Upadhyaya and R. Sharma, Cost inspection of a Geo/G/1 retrial model using particle swarm optimization and Genetic algorithm , Ain Shams Eng. J. 12 (2), 2241-2254, 2021.
  • [44] R. Harini, and K. Indhira, Dynamical behaviour and meta heuristic optimization of a hospital management software system, Heliyon. 10 (16), 2024.
  • [45] J. H. Holland, Adaptation in natural and artificial systems, Univ. of Mich. Press 2, 29-41, 1975.
  • [46] N. M. Mathavavisakan and K. Indhira, Nonlinear metaheuristic cost optimization and ANFIS computing of feedback retrial queue with two dependent phases of service under Bernoulli working vacation, Int. J. Mod. Phys. B. 38(30), 2440004, 2024.
  • [47] M. Jain and S. Dhibar, ANFIS and metaheuristic optimization for strategic joining policy with re-attempt and vacation. Math. Comput. Simul. 211, 57-84, 2023.
There are 47 citations in total.

Details

Primary Language English
Subjects Probability Theory, Stochastic Analysis and Modelling, Mathematical Optimisation
Journal Section Research Article
Authors

Kalaiselvi J 0009-0003-4380-9520

M C Saravanarajan 0000-0001-5768-3701

Project Number NIL
Early Pub Date September 2, 2025
Publication Date October 29, 2025
Submission Date May 9, 2025
Acceptance Date August 7, 2025
Published in Issue Year 2025 Volume: 54 Issue: 5

Cite

APA J, K., & Saravanarajan, M. C. (2025). Particle swarm optimization of a single server retrial queue with balking and immediate feedback under Bernoulli working vacation. Hacettepe Journal of Mathematics and Statistics, 54(5), 1976-2006. https://doi.org/10.15672/hujms.1696033
AMA J K, Saravanarajan MC. Particle swarm optimization of a single server retrial queue with balking and immediate feedback under Bernoulli working vacation. Hacettepe Journal of Mathematics and Statistics. October 2025;54(5):1976-2006. doi:10.15672/hujms.1696033
Chicago J, Kalaiselvi, and M C Saravanarajan. “Particle Swarm Optimization of a Single Server Retrial Queue With Balking and Immediate Feedback under Bernoulli Working Vacation”. Hacettepe Journal of Mathematics and Statistics 54, no. 5 (October 2025): 1976-2006. https://doi.org/10.15672/hujms.1696033.
EndNote J K, Saravanarajan MC (October 1, 2025) Particle swarm optimization of a single server retrial queue with balking and immediate feedback under Bernoulli working vacation. Hacettepe Journal of Mathematics and Statistics 54 5 1976–2006.
IEEE K. J and M. C. Saravanarajan, “Particle swarm optimization of a single server retrial queue with balking and immediate feedback under Bernoulli working vacation”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 5, pp. 1976–2006, 2025, doi: 10.15672/hujms.1696033.
ISNAD J, Kalaiselvi - Saravanarajan, M C. “Particle Swarm Optimization of a Single Server Retrial Queue With Balking and Immediate Feedback under Bernoulli Working Vacation”. Hacettepe Journal of Mathematics and Statistics 54/5 (October2025), 1976-2006. https://doi.org/10.15672/hujms.1696033.
JAMA J K, Saravanarajan MC. Particle swarm optimization of a single server retrial queue with balking and immediate feedback under Bernoulli working vacation. Hacettepe Journal of Mathematics and Statistics. 2025;54:1976–2006.
MLA J, Kalaiselvi and M C Saravanarajan. “Particle Swarm Optimization of a Single Server Retrial Queue With Balking and Immediate Feedback under Bernoulli Working Vacation”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 5, 2025, pp. 1976-0, doi:10.15672/hujms.1696033.
Vancouver J K, Saravanarajan MC. Particle swarm optimization of a single server retrial queue with balking and immediate feedback under Bernoulli working vacation. Hacettepe Journal of Mathematics and Statistics. 2025;54(5):1976-200.