Research Article
BibTex RIS Cite
Year 2020, , 784 - 792, 02.04.2020
https://doi.org/10.15672/hujms.456426

Abstract

References

  • [1] M.M. Ali, Idealization and Theorems of D.D. Anderson, Comm. Algebra 34, 4479- 4501, 2006.
  • [2] M.M. Ali, Idealization and Theorems of D.D. Anderson II, Comm. Algebra 35, 2767- 2792, 2007.
  • [3] D.D. Anderson and A. Mimouni, LPI domains and Pullbacks, Comm. Algebra 42, 2759-2768, 2014.
  • [4] D.D. Anderson and M. Roitman, A characterization of cancellation ideals, Proc. Amer. Math. Soc. 125, 2853-2854, 1997.
  • [5] D.D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (1), 3-56, 2009.
  • [6] D.D. Anderson and M. Zafrullah, Integral domains in which nonzero locally principal ideals are invertible, Comm. Algebra 39, 933-941, 2011.
  • [7] C. Bakkari, S. Kabbaj and N. Mahdou, Trivial extension definided by Prûfer conditions, J. Pure App. Algebra 214, 53-60, 2014.
  • [8] S. Bazzoni, Class semigroups of Prüfer domains, J. Algebra 184, 613-631, 1996.
  • [9] M. D’Anna, C.A. Finocchiaro and M. Fontana, Amalgamated algebra along an ideal, Commmutative Algebra and Applications, Walter De Gruyter, 155-172, 2009.
  • [10] M. D’Anna, C.A. Finocchiaro and M. Fontana, Properties of chains of prime ideals in amalgamated algebras along an ideal, J. Pure Appl. Algebra 214, 1633-1641, 2010.
  • [11] M. D’Anna, C.A. Finocchiaro and M. Fontana, New algebraic properties of an amalgamated algebra along an ideal, Comm. Algebra 44, 1836-1851, 2016.
  • [12] M. D’Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6, 443-459, 2007.
  • [13] S. Glaz, Commutative coherent rings, Springer-Verlag, Lecture Notes in Mathematics, 13-71, 1989.
  • [14] S. Glaz and W. Vasconcelos, Flat ideals II, Manuscripta Math. 22 (4), 325-341, 1977.
  • [15] F. Halter-Koch, Clifford semigroups of ideals in monoids and domains, Forum Math. 21, 1001-1020, 2009.
  • [16] W.C. Holland, J. Martinez, W.Wm. McGovern and M. Tesemma, Bazzoni’s Conjecture, J. Algebra 320, 1764-1768, 2008.
  • [17] K. Hu, F.G. Wang and H. Chen, A note on LPI domains, Bull. Korean Math. Soc. 50 (3), 719-725, 2013.
  • [18] J.A. Huckaba, Commutative rings with zero divisors, Marcel Dekker, New York- Basel,1988.
  • [19] K. Louartiti and N. Mahdou, Transfer of multiplication-like conditions in amalgamated algebra along an ideal, Afr. Diaspora J. Math. 14 (1), 119-125, 2012.
  • [20] G. Picozza and F. Tartarone, Flat ideals and stability in integral domains, J. Algebra 324, 1790-1802, 2010.
  • [21] J. Sally and W. Vasconcelos, Flat ideals I, Comm. Algebra 3 531-543, 1975.
  • [22] S. Xing and F.G. Wang, Two questions on domains in which locally principal ideals are invertible. J. Algebra Appl. 16 (6), 1750112, 8 pp, 2017.

On LPI rings

Year 2020, , 784 - 792, 02.04.2020
https://doi.org/10.15672/hujms.456426

Abstract

In this paper, we extend the $LPI$ property (that is, every locally principal ideal in an integral domain is invertible) to rings with zero-divisors and we study the class of commutative rings in which every regular locally principal ideal is invertible called $LPI$ rings. We investigate the stability of this property under homomorphic image, and its transfer to various contexts of constructions such as direct products, amalgamation of rings and trivial ring extensions. Our results generate examples which enrich the current literature with new and original families of rings that satisfy this property.

References

  • [1] M.M. Ali, Idealization and Theorems of D.D. Anderson, Comm. Algebra 34, 4479- 4501, 2006.
  • [2] M.M. Ali, Idealization and Theorems of D.D. Anderson II, Comm. Algebra 35, 2767- 2792, 2007.
  • [3] D.D. Anderson and A. Mimouni, LPI domains and Pullbacks, Comm. Algebra 42, 2759-2768, 2014.
  • [4] D.D. Anderson and M. Roitman, A characterization of cancellation ideals, Proc. Amer. Math. Soc. 125, 2853-2854, 1997.
  • [5] D.D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (1), 3-56, 2009.
  • [6] D.D. Anderson and M. Zafrullah, Integral domains in which nonzero locally principal ideals are invertible, Comm. Algebra 39, 933-941, 2011.
  • [7] C. Bakkari, S. Kabbaj and N. Mahdou, Trivial extension definided by Prûfer conditions, J. Pure App. Algebra 214, 53-60, 2014.
  • [8] S. Bazzoni, Class semigroups of Prüfer domains, J. Algebra 184, 613-631, 1996.
  • [9] M. D’Anna, C.A. Finocchiaro and M. Fontana, Amalgamated algebra along an ideal, Commmutative Algebra and Applications, Walter De Gruyter, 155-172, 2009.
  • [10] M. D’Anna, C.A. Finocchiaro and M. Fontana, Properties of chains of prime ideals in amalgamated algebras along an ideal, J. Pure Appl. Algebra 214, 1633-1641, 2010.
  • [11] M. D’Anna, C.A. Finocchiaro and M. Fontana, New algebraic properties of an amalgamated algebra along an ideal, Comm. Algebra 44, 1836-1851, 2016.
  • [12] M. D’Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6, 443-459, 2007.
  • [13] S. Glaz, Commutative coherent rings, Springer-Verlag, Lecture Notes in Mathematics, 13-71, 1989.
  • [14] S. Glaz and W. Vasconcelos, Flat ideals II, Manuscripta Math. 22 (4), 325-341, 1977.
  • [15] F. Halter-Koch, Clifford semigroups of ideals in monoids and domains, Forum Math. 21, 1001-1020, 2009.
  • [16] W.C. Holland, J. Martinez, W.Wm. McGovern and M. Tesemma, Bazzoni’s Conjecture, J. Algebra 320, 1764-1768, 2008.
  • [17] K. Hu, F.G. Wang and H. Chen, A note on LPI domains, Bull. Korean Math. Soc. 50 (3), 719-725, 2013.
  • [18] J.A. Huckaba, Commutative rings with zero divisors, Marcel Dekker, New York- Basel,1988.
  • [19] K. Louartiti and N. Mahdou, Transfer of multiplication-like conditions in amalgamated algebra along an ideal, Afr. Diaspora J. Math. 14 (1), 119-125, 2012.
  • [20] G. Picozza and F. Tartarone, Flat ideals and stability in integral domains, J. Algebra 324, 1790-1802, 2010.
  • [21] J. Sally and W. Vasconcelos, Flat ideals I, Comm. Algebra 3 531-543, 1975.
  • [22] S. Xing and F.G. Wang, Two questions on domains in which locally principal ideals are invertible. J. Algebra Appl. 16 (6), 1750112, 8 pp, 2017.
There are 22 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Rachida El Khalfaoui This is me 0000-0003-0830-0481

Najib Mahdou 0000-0001-6353-1114

Abdeslam Mimouni 0000-0001-5865-2683

Publication Date April 2, 2020
Published in Issue Year 2020

Cite

APA El Khalfaoui, R., Mahdou, N., & Mimouni, A. (2020). On LPI rings. Hacettepe Journal of Mathematics and Statistics, 49(2), 784-792. https://doi.org/10.15672/hujms.456426
AMA El Khalfaoui R, Mahdou N, Mimouni A. On LPI rings. Hacettepe Journal of Mathematics and Statistics. April 2020;49(2):784-792. doi:10.15672/hujms.456426
Chicago El Khalfaoui, Rachida, Najib Mahdou, and Abdeslam Mimouni. “On LPI Rings”. Hacettepe Journal of Mathematics and Statistics 49, no. 2 (April 2020): 784-92. https://doi.org/10.15672/hujms.456426.
EndNote El Khalfaoui R, Mahdou N, Mimouni A (April 1, 2020) On LPI rings. Hacettepe Journal of Mathematics and Statistics 49 2 784–792.
IEEE R. El Khalfaoui, N. Mahdou, and A. Mimouni, “On LPI rings”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 2, pp. 784–792, 2020, doi: 10.15672/hujms.456426.
ISNAD El Khalfaoui, Rachida et al. “On LPI Rings”. Hacettepe Journal of Mathematics and Statistics 49/2 (April 2020), 784-792. https://doi.org/10.15672/hujms.456426.
JAMA El Khalfaoui R, Mahdou N, Mimouni A. On LPI rings. Hacettepe Journal of Mathematics and Statistics. 2020;49:784–792.
MLA El Khalfaoui, Rachida et al. “On LPI Rings”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 2, 2020, pp. 784-92, doi:10.15672/hujms.456426.
Vancouver El Khalfaoui R, Mahdou N, Mimouni A. On LPI rings. Hacettepe Journal of Mathematics and Statistics. 2020;49(2):784-92.