Research Article
BibTex RIS Cite
Year 2020, , 1020 - 1029, 02.06.2020
https://doi.org/10.15672/hujms.467559

Abstract

References

  • [1] H.F. Akız, Covering Morphisms of Local Topological Group-Groupoids, Proc. Nat. Acad. Sci. India Sect. A, 88 (4), 2018.
  • [2] H.F. Akız, N. Alemdar, O. Mucuk and T. Şahan, Coverings of internal groupoids and crossed modules in the category of groups with operations, Georgian Math. J. 20 (2), 223–238, 2013.
  • [3] N. Alemdar and O. Mucuk, The liftings of R-modules to covering groupoids, Hacet. J. Math. Stat. 41 (6), 813–822, 2012.
  • [4] J.C. Baez and A.D. Lauda, Higher-dimensional algebra. V. 2-groups. Theory Appl. Categ. 12 423–491, 2004.
  • [5] R. Brown, Topology and groupoids, Booksurge PLC, 2006.
  • [6] R. Brown and G. Danesh-Naruie, The Fundamental Groupoid as a Topological Groupoid, Proc. Edinb. Math. Soc. 19 (2), 237–244, 1975.
  • [7] R. Brown and J.P.L. Hardy , Topological Groupoids I: Universal Constructions, Math. Nachr. 71, 273–286, 1976.
  • [8] R. Brown and O. Mucuk, Covering groups of non-connected topological groups revis- ited, Math. Proc. Camb. Phill. Soc. 115, 97–110, 1994.
  • [9] R. Brown and C.B. Spencer , G-groupoids, crossed modules and the fundamental groupoid of a topological group, Proc. Konn. Ned. Akad. v. Wet. 79, 296–302, 1976.
  • [10] R. Brown, G. Danesh-Naruie and J.P.L. Hardy, Topological groupoids II: Covering morphisms and G-spaces, Math. Nachr. 74, 143–156, 1976.
  • [11] T. Datuashvili, Categorical, homological and homotopical properties of algebraic ob- jects, Dissertation, Georgian Academy of Science, Tbilisi, 2006.
  • [12] J.P. Hardy, Topological Groupoids: Coverings and Universal Constractions, Univer- sity Colloge of North., 1974.
  • [13] P.J. Higgins, Groups with multiple operators, Proc. London Math. Soc. 3 (6), 366–416, 1956.
  • [14] İ. İçen, A.F. Özcan and M.H. Gürsoy, Topological group-groupoids and their coverings, Indian J. Pure Appl. Math. 36 (9), 493–502, 2005.
  • [15] K.C.H. Mackenzie, Lie groupoids and Lie algebroids in differential geometry, London Math. Soc. Lecture Note Series 124, Cambridge University Press, 1987.
  • [16] O. Mucuk, Covering groups of non-connected topological groups and the monodromy groupoid of a topological groupoid, PhD Thesis, University of Wales, 1993.
  • [17] O. Mucuk, Coverings and ring-groupoids, Georgian Math. J. 5, 475–482, 1998.
  • [18] O. Mucuk and H.F. Akız, Monodromy Groupoid of an Internal Groupoid in Topolog- ical Groups with Operations, Filomat, 29, 2355–2366, 2015.
  • [19] O. Mucuk and T. Şahan, Coverings and crossed modules of topological groups with operations, Turkish J. Math. 38, 833–845, 2014.
  • [20] O. Mucuk, T. Şahan and N. Alemdar, Normality and quotients in crossed modules and group-groupoids, Appl. Categor. Struct. 23, 415–428, 2015.
  • [21] O. Mucuk, B. Kılıçarslan, T. Şahan and N. Alemdar, Group-groupoid and monodromy groupoid, Topology Appl. 158, 2034–2042, 2011.
  • [22] G. Orzech, Obstruction theory in algebraic categories I and II, J. Pure. Appl. Algebra 2, 287–314 and 315–340, 1972.
  • [23] T. Porter, Extensions, crossed modules and internal categories in categories of groups with operations, Proc. Edinb. Math. Soc. 30, 373–381, 1987.

Covering morphisms of topological internal groupoids

Year 2020, , 1020 - 1029, 02.06.2020
https://doi.org/10.15672/hujms.467559

Abstract

Let $X$ be a topological group with operations whose underlying space has a universal cover. Then the fundamental groupoid $\pi X$ becomes a topological internal groupoid, i.e., an internal groupoid in the category of topological groups. In this paper, we prove that the slice category $\text{Cov}_{sTC}/X$ of covering morphisms $p:\tilde{X}\rightarrow X$ of topological groups with operations in which $\tilde{X}$ has also a universal cover and the category $\text{Cov}_{Gpd(TC)}/\pi X$ of covering morphisms $q:\tilde{G}\rightarrow \pi X $ of topological internal groupoids based on $\pi X$ are equivalent. We also prove that for a topological internal groupoid $G$, the category $\text{Cov}_{Gpd(TC)}/G$ of covering morphisms of topological internal groupoids based on $G$ and the category $\text{ACT}_{Gpd(TC)}/G$ of topological internal groupoid actions of $G$ on topological groups with operations are equivalent.

References

  • [1] H.F. Akız, Covering Morphisms of Local Topological Group-Groupoids, Proc. Nat. Acad. Sci. India Sect. A, 88 (4), 2018.
  • [2] H.F. Akız, N. Alemdar, O. Mucuk and T. Şahan, Coverings of internal groupoids and crossed modules in the category of groups with operations, Georgian Math. J. 20 (2), 223–238, 2013.
  • [3] N. Alemdar and O. Mucuk, The liftings of R-modules to covering groupoids, Hacet. J. Math. Stat. 41 (6), 813–822, 2012.
  • [4] J.C. Baez and A.D. Lauda, Higher-dimensional algebra. V. 2-groups. Theory Appl. Categ. 12 423–491, 2004.
  • [5] R. Brown, Topology and groupoids, Booksurge PLC, 2006.
  • [6] R. Brown and G. Danesh-Naruie, The Fundamental Groupoid as a Topological Groupoid, Proc. Edinb. Math. Soc. 19 (2), 237–244, 1975.
  • [7] R. Brown and J.P.L. Hardy , Topological Groupoids I: Universal Constructions, Math. Nachr. 71, 273–286, 1976.
  • [8] R. Brown and O. Mucuk, Covering groups of non-connected topological groups revis- ited, Math. Proc. Camb. Phill. Soc. 115, 97–110, 1994.
  • [9] R. Brown and C.B. Spencer , G-groupoids, crossed modules and the fundamental groupoid of a topological group, Proc. Konn. Ned. Akad. v. Wet. 79, 296–302, 1976.
  • [10] R. Brown, G. Danesh-Naruie and J.P.L. Hardy, Topological groupoids II: Covering morphisms and G-spaces, Math. Nachr. 74, 143–156, 1976.
  • [11] T. Datuashvili, Categorical, homological and homotopical properties of algebraic ob- jects, Dissertation, Georgian Academy of Science, Tbilisi, 2006.
  • [12] J.P. Hardy, Topological Groupoids: Coverings and Universal Constractions, Univer- sity Colloge of North., 1974.
  • [13] P.J. Higgins, Groups with multiple operators, Proc. London Math. Soc. 3 (6), 366–416, 1956.
  • [14] İ. İçen, A.F. Özcan and M.H. Gürsoy, Topological group-groupoids and their coverings, Indian J. Pure Appl. Math. 36 (9), 493–502, 2005.
  • [15] K.C.H. Mackenzie, Lie groupoids and Lie algebroids in differential geometry, London Math. Soc. Lecture Note Series 124, Cambridge University Press, 1987.
  • [16] O. Mucuk, Covering groups of non-connected topological groups and the monodromy groupoid of a topological groupoid, PhD Thesis, University of Wales, 1993.
  • [17] O. Mucuk, Coverings and ring-groupoids, Georgian Math. J. 5, 475–482, 1998.
  • [18] O. Mucuk and H.F. Akız, Monodromy Groupoid of an Internal Groupoid in Topolog- ical Groups with Operations, Filomat, 29, 2355–2366, 2015.
  • [19] O. Mucuk and T. Şahan, Coverings and crossed modules of topological groups with operations, Turkish J. Math. 38, 833–845, 2014.
  • [20] O. Mucuk, T. Şahan and N. Alemdar, Normality and quotients in crossed modules and group-groupoids, Appl. Categor. Struct. 23, 415–428, 2015.
  • [21] O. Mucuk, B. Kılıçarslan, T. Şahan and N. Alemdar, Group-groupoid and monodromy groupoid, Topology Appl. 158, 2034–2042, 2011.
  • [22] G. Orzech, Obstruction theory in algebraic categories I and II, J. Pure. Appl. Algebra 2, 287–314 and 315–340, 1972.
  • [23] T. Porter, Extensions, crossed modules and internal categories in categories of groups with operations, Proc. Edinb. Math. Soc. 30, 373–381, 1987.
There are 23 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Osman Mucuk 0000-0001-7411-2871

Hürmet Fulya Akız 0000-0002-8547-2175

Publication Date June 2, 2020
Published in Issue Year 2020

Cite

APA Mucuk, O., & Akız, H. F. (2020). Covering morphisms of topological internal groupoids. Hacettepe Journal of Mathematics and Statistics, 49(3), 1020-1029. https://doi.org/10.15672/hujms.467559
AMA Mucuk O, Akız HF. Covering morphisms of topological internal groupoids. Hacettepe Journal of Mathematics and Statistics. June 2020;49(3):1020-1029. doi:10.15672/hujms.467559
Chicago Mucuk, Osman, and Hürmet Fulya Akız. “Covering Morphisms of Topological Internal Groupoids”. Hacettepe Journal of Mathematics and Statistics 49, no. 3 (June 2020): 1020-29. https://doi.org/10.15672/hujms.467559.
EndNote Mucuk O, Akız HF (June 1, 2020) Covering morphisms of topological internal groupoids. Hacettepe Journal of Mathematics and Statistics 49 3 1020–1029.
IEEE O. Mucuk and H. F. Akız, “Covering morphisms of topological internal groupoids”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 3, pp. 1020–1029, 2020, doi: 10.15672/hujms.467559.
ISNAD Mucuk, Osman - Akız, Hürmet Fulya. “Covering Morphisms of Topological Internal Groupoids”. Hacettepe Journal of Mathematics and Statistics 49/3 (June 2020), 1020-1029. https://doi.org/10.15672/hujms.467559.
JAMA Mucuk O, Akız HF. Covering morphisms of topological internal groupoids. Hacettepe Journal of Mathematics and Statistics. 2020;49:1020–1029.
MLA Mucuk, Osman and Hürmet Fulya Akız. “Covering Morphisms of Topological Internal Groupoids”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 3, 2020, pp. 1020-9, doi:10.15672/hujms.467559.
Vancouver Mucuk O, Akız HF. Covering morphisms of topological internal groupoids. Hacettepe Journal of Mathematics and Statistics. 2020;49(3):1020-9.