Research Article
BibTex RIS Cite

The strong convergence of a proximal point algorithm in complete CAT(0) metric spaces

Year 2020, , 399 - 408, 06.02.2020
https://doi.org/10.15672/hujms.470975

Abstract

In this paper, we consider a proximal point algorithm for finding zeros of maximal monotone operators in complete CAT(0) spaces. First, a necessary and sufficient condition is presented for the zero set of the operator to be nonempty. Afterwards, we prove that, under suitable conditions, the proposed algorithm converges strongly to the metric projection of some point onto the zero set of the involving maximal monotone operator.

References

  • [1] P. Ahmadi and H. Khatibzadeh, On the convergence of inexact proximal point algorithm on Hadamard manifolds, Taiwanese J. Math. 18, 419–433, 2014.
  • [2] B. Ahmadi Kakavandi, Weak topologies in complete CAT(0) metric spaces, Proc. Amer. Math. Soc. 141, 1029–1039, 2013.
  • [3] B. Ahmadi Kakavandi and M. Amini, Duality and subdifierential for convex functions on complete CAT(0) metric spaces, Nonlinear Anal. 73, 3450–3455, 2010.
  • [4] M. Bacak, Convex analysis and optimization in Hadamard spaces, De Gruyter Series in Nonlinear Analysis and Applications, 22, De Gruyter, Berlin, 2014.
  • [5] I.D. Berg and I.G. Nikolaev, Quasilinearization and curvature of Alexandrov spaces, Geom. Dedicata, 133, 195–218, 2008.
  • [6] H. Br´ezis and P.L. Lions, Produits infinis de r´esolvantes, Israel J. Math. 29, 329–345, 1978.
  • [7] M. Bridson and A. Haefliger, Metric spaces of non-positive curvature, 319, Springer, Berlin, 1999.
  • [8] K.S. Brown, Buildings, Springer, New York, 1989.
  • [9] D. Burago, Y. Burago and S. Ivanov, A course in metric geometry, Graduate Studies in Mathematics, 33 American Mathematical Society, Providence, RI, 2001.
  • [10] H. Dehghan and J. Rooin, Metric projection and convergence theorems for nonexpansive mappings in Hadamard spaces, arXiv: 1410.1137v1[math.FA].
  • [11] S. Dhompongsa and B. Panyanak, On △-convergence theorems in CAT(0) spaces, Comput. Math. Appl. 56, 2572–2579, 2008.
  • [12] B. Djafari Rouhani and H. Khatibzadeh, On the proximal point algorithm, J. Optim. Theory Appl. 137, 411–417, 2008.
  • [13] B. Djafari Rouhani and S. Moradi, Strong convergence of two proximal point algorithms with possible unbounded error sequences, J. Optim.Theory Appl. 172, 222–235, 2017.
  • [14] R. Esp´inola and A. Fern´andez-Le´on, CAT(k)-spaces, weak convergence and fixed points, J. Math. Anal. Appl. 353, 410–427, 2009.
  • [15] K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings. Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker Inc., New York, 1984.
  • [16] M. Gromov and S.M. Bates, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, 152, eds. J. Lafontaine and P. Pansu) (Birkh¨auser, Boston, 1999, with appendices by M. Katz, P. Pansu and S. Semmes.
  • [17] O. G¨uler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim. 29, 403–419, 1991.
  • [18] M.T. Heydari and S. Ranjbar, Halpern-type proximal point algorithm in complete CAT(0) metric spaces, An. St. Univ. Ovidius Constanta. 24 (3), 141–159, 2016.
  • [19] J. Jöst, Nonpositive curvature: geometric and analytic aspects, Lectures in Mathematics, Birkhauser, Basel, 1997.
  • [20] H. Khatibzadeh and S. Ranjbar, Monotone operators and the proximal point algorithm in complete CAT(0) metric spaces, J. Aust. Math. Soc. 103 (1), 70–90, 2017.
  • [21] W.A. Kirk, Fixed point theorems in CAT(0) spaces and $\mathbb{R}$-trees, J. Fixed Point Theory Appl. 4, 309–316, 2004.
  • [22] W.A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal. (TMA) 68, 3689–3696, 2008.
  • [23] C. Li, G. Lopez and V. Martin-Marquez, Monotone vector fields and the proximal point algorithm on Hadamard manifolds, J. London Math. Soc. 79 (2), 663–683, 2009.
  • [24] T.C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60, 179– 182, 1976.
  • [25] B. Martinet, Régularisation d,inéquations variationnelles par approximations successives, Rev. Fran´caise d,Inform. et de Rech. Opérationnelle, 3, 154–158, 1970.
  • [26] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14, 877–898, 1976.
Year 2020, , 399 - 408, 06.02.2020
https://doi.org/10.15672/hujms.470975

Abstract

References

  • [1] P. Ahmadi and H. Khatibzadeh, On the convergence of inexact proximal point algorithm on Hadamard manifolds, Taiwanese J. Math. 18, 419–433, 2014.
  • [2] B. Ahmadi Kakavandi, Weak topologies in complete CAT(0) metric spaces, Proc. Amer. Math. Soc. 141, 1029–1039, 2013.
  • [3] B. Ahmadi Kakavandi and M. Amini, Duality and subdifierential for convex functions on complete CAT(0) metric spaces, Nonlinear Anal. 73, 3450–3455, 2010.
  • [4] M. Bacak, Convex analysis and optimization in Hadamard spaces, De Gruyter Series in Nonlinear Analysis and Applications, 22, De Gruyter, Berlin, 2014.
  • [5] I.D. Berg and I.G. Nikolaev, Quasilinearization and curvature of Alexandrov spaces, Geom. Dedicata, 133, 195–218, 2008.
  • [6] H. Br´ezis and P.L. Lions, Produits infinis de r´esolvantes, Israel J. Math. 29, 329–345, 1978.
  • [7] M. Bridson and A. Haefliger, Metric spaces of non-positive curvature, 319, Springer, Berlin, 1999.
  • [8] K.S. Brown, Buildings, Springer, New York, 1989.
  • [9] D. Burago, Y. Burago and S. Ivanov, A course in metric geometry, Graduate Studies in Mathematics, 33 American Mathematical Society, Providence, RI, 2001.
  • [10] H. Dehghan and J. Rooin, Metric projection and convergence theorems for nonexpansive mappings in Hadamard spaces, arXiv: 1410.1137v1[math.FA].
  • [11] S. Dhompongsa and B. Panyanak, On △-convergence theorems in CAT(0) spaces, Comput. Math. Appl. 56, 2572–2579, 2008.
  • [12] B. Djafari Rouhani and H. Khatibzadeh, On the proximal point algorithm, J. Optim. Theory Appl. 137, 411–417, 2008.
  • [13] B. Djafari Rouhani and S. Moradi, Strong convergence of two proximal point algorithms with possible unbounded error sequences, J. Optim.Theory Appl. 172, 222–235, 2017.
  • [14] R. Esp´inola and A. Fern´andez-Le´on, CAT(k)-spaces, weak convergence and fixed points, J. Math. Anal. Appl. 353, 410–427, 2009.
  • [15] K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings. Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker Inc., New York, 1984.
  • [16] M. Gromov and S.M. Bates, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, 152, eds. J. Lafontaine and P. Pansu) (Birkh¨auser, Boston, 1999, with appendices by M. Katz, P. Pansu and S. Semmes.
  • [17] O. G¨uler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim. 29, 403–419, 1991.
  • [18] M.T. Heydari and S. Ranjbar, Halpern-type proximal point algorithm in complete CAT(0) metric spaces, An. St. Univ. Ovidius Constanta. 24 (3), 141–159, 2016.
  • [19] J. Jöst, Nonpositive curvature: geometric and analytic aspects, Lectures in Mathematics, Birkhauser, Basel, 1997.
  • [20] H. Khatibzadeh and S. Ranjbar, Monotone operators and the proximal point algorithm in complete CAT(0) metric spaces, J. Aust. Math. Soc. 103 (1), 70–90, 2017.
  • [21] W.A. Kirk, Fixed point theorems in CAT(0) spaces and $\mathbb{R}$-trees, J. Fixed Point Theory Appl. 4, 309–316, 2004.
  • [22] W.A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal. (TMA) 68, 3689–3696, 2008.
  • [23] C. Li, G. Lopez and V. Martin-Marquez, Monotone vector fields and the proximal point algorithm on Hadamard manifolds, J. London Math. Soc. 79 (2), 663–683, 2009.
  • [24] T.C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60, 179– 182, 1976.
  • [25] B. Martinet, Régularisation d,inéquations variationnelles par approximations successives, Rev. Fran´caise d,Inform. et de Rech. Opérationnelle, 3, 154–158, 1970.
  • [26] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14, 877–898, 1976.
There are 26 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Mohsen Tahernia This is me 0000-0002-0014-1052

Sirous Moradi 0000-0002-8640-7252

Somayeh Jafari This is me 0000-0002-3832-3177

Publication Date February 6, 2020
Published in Issue Year 2020

Cite

APA Tahernia, M., Moradi, S., & Jafari, S. (2020). The strong convergence of a proximal point algorithm in complete CAT(0) metric spaces. Hacettepe Journal of Mathematics and Statistics, 49(1), 399-408. https://doi.org/10.15672/hujms.470975
AMA Tahernia M, Moradi S, Jafari S. The strong convergence of a proximal point algorithm in complete CAT(0) metric spaces. Hacettepe Journal of Mathematics and Statistics. February 2020;49(1):399-408. doi:10.15672/hujms.470975
Chicago Tahernia, Mohsen, Sirous Moradi, and Somayeh Jafari. “The Strong Convergence of a Proximal Point Algorithm in Complete CAT(0) Metric Spaces”. Hacettepe Journal of Mathematics and Statistics 49, no. 1 (February 2020): 399-408. https://doi.org/10.15672/hujms.470975.
EndNote Tahernia M, Moradi S, Jafari S (February 1, 2020) The strong convergence of a proximal point algorithm in complete CAT(0) metric spaces. Hacettepe Journal of Mathematics and Statistics 49 1 399–408.
IEEE M. Tahernia, S. Moradi, and S. Jafari, “The strong convergence of a proximal point algorithm in complete CAT(0) metric spaces”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 1, pp. 399–408, 2020, doi: 10.15672/hujms.470975.
ISNAD Tahernia, Mohsen et al. “The Strong Convergence of a Proximal Point Algorithm in Complete CAT(0) Metric Spaces”. Hacettepe Journal of Mathematics and Statistics 49/1 (February 2020), 399-408. https://doi.org/10.15672/hujms.470975.
JAMA Tahernia M, Moradi S, Jafari S. The strong convergence of a proximal point algorithm in complete CAT(0) metric spaces. Hacettepe Journal of Mathematics and Statistics. 2020;49:399–408.
MLA Tahernia, Mohsen et al. “The Strong Convergence of a Proximal Point Algorithm in Complete CAT(0) Metric Spaces”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 1, 2020, pp. 399-08, doi:10.15672/hujms.470975.
Vancouver Tahernia M, Moradi S, Jafari S. The strong convergence of a proximal point algorithm in complete CAT(0) metric spaces. Hacettepe Journal of Mathematics and Statistics. 2020;49(1):399-408.