In this article, we consider an initial value problem for a nonlinear differential equation with Riemann-Liouville fractional derivative. By proposing a new approach, we prove local existence and uniqueness of the solution when the nonlinear function on the right hand side of the equation under consideration is continuous on $(0,T]\times\mathbb{R}.$
***********************************************************************************************************************************************
***********************************************************************************************************************************************
Fractional differential equations mean value theorem Nagumo-type uniqueness Peano-type existence theorem
Primary Language | English |
---|---|
Subjects | Mathematical Sciences |
Journal Section | Mathematics |
Authors | |
Publication Date | October 6, 2020 |
Published in Issue | Year 2020 |