Research Article
BibTex RIS Cite
Year 2020, , 1667 - 1675, 06.10.2020
https://doi.org/10.15672/hujms.520995

Abstract

References

  • [1] S. Chanillo, D. Watson and R.L. Wheeden, Some integral and maximal operators related to star-like, Studia Math. 107, 223–255, 1993.
  • [2] Y. Ding and S. Lu, The $L^{p_1}\times\ldots\times L^{p_k}$ boundedness for some rough operators, J. Math. Anal. Appl. 203, 66–186, 1996.
  • [3] Y. Ding and S. Lu, Weighted norm inequalities for fractional integral operators with rough kernel, Canad. J. Math. 50, 29–39 1998.
  • [4] Y. Ding and S. Lu, Homogeneous fractional integrals on Hardy spaces, Tohoku Math. J. 52, 153–162, 2000.
  • [5] A.D. Gadzhiev and I.A. Aliev, Riesz and Bessel potentials generated by the generalized shift operator and their inversions, (Russian) Theory of functions and approximations, Part 1 (Russian) (Saratov, 1988), 47–53, Saratov. Gos. Univ., Saratov, 1990.
  • [6] V.S. Guliyev, A. Serbetci and I. Ekincioglu, On boundedness of the generalized Bpotential integral operators in the Lorentz spaces, Integral Transforms Spec. Funct. 18 (12), 885–895, 2007.
  • [7] V.S. Guliyev, A. Serbetci and I. Ekincioglu, Necessary and sufficient conditions for the boundedness of rough B-fractional integral operators in the Lorentz spaces, J. Math. Anal. Appl. 336 (1), 425–437, 2007.
  • [8] V.S. Guliyev, A. Serbetci and I. Ekincioglu, The boundedness of the generalized anisotropic potentials with rough kernels in the Lorentz spaces, Integral Transforms Spec. Funct. 22 (12), 919–935, 2011.
  • [9] I.A. Kipriyanov, Fourier-Bessel transformations and imbedding theorems, Trudy Math. Inst. Steklov, 89, 130–213, 1967.
  • [10] B.M. Levitan, Bessel function expansions in series and Fourier integrals, Uspekhi Mat. Nauk. (Russian), 6 (2), 102–143, 1951.
  • [11] L.N. Lyakhov, Multipliers of the Mixed Fourier-Bessel transform, Proc. Steklov Inst. Math. 214, 234–249, 1997.
  • [12] B. Muckenhoupt and R.L. Wheeden, Weighted norm inequalities for singular and fractional integrals, Trans. Amer. Math. Soc. 161, 249–258, 1971.
  • [13] E.M. Stein, Singular Integrals And Differentiability Properties of Functions, Princeton New Jersey, Princeton Uni. Press, 1970.
  • [14] E.M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, N. J., 1993.
  • [15] E.M. Stein and G. Weiss, On the theory of harmonic functions of several variables I. The theory of Hp-spaces, Acta Math. 103, 25–62, 1960.
  • [16] M.H. Taibleson and G.Weiss, The molecular characterization of certain Hardy spaces, Asterisque 77 Societe Math. de France, 67–149, 1980.

Some inequalities for homogeneous $B_n$-potential type integrals on $H^{p}_{\Delta_{\nu}}$ Hardy spaces

Year 2020, , 1667 - 1675, 06.10.2020
https://doi.org/10.15672/hujms.520995

Abstract

We prove the norm inequalities for potential operators and fractional integrals related to generalized shift operator defined on spaces of homogeneous type. We show that these operators are bounded from $H^{p}_{\Delta_{\nu}}$ to $H^{q}_{\Delta_{\nu}}$, for $\frac{1}{q}=\frac{1}{p}-\frac{\alpha}{Q}$, provided $0<\alpha<\frac{1}{2}$, and $\alpha<\beta\leq 1$ and $\frac{Q}{Q+\beta}<p\leq\frac{Q}{Q+\alpha}$. By applying atomic-molecular decomposition of $H^{p}_{\Delta_{\nu}}$ Hardy space, we obtain the boundedness of homogeneous fractional type integrals which extends the Stein-Weiss and Taibleson-Weiss's results for the boundedness of the $B_n$-Riesz potential operator on $H^{p}_{\Delta_{\nu}}$ Hardy space.


References

  • [1] S. Chanillo, D. Watson and R.L. Wheeden, Some integral and maximal operators related to star-like, Studia Math. 107, 223–255, 1993.
  • [2] Y. Ding and S. Lu, The $L^{p_1}\times\ldots\times L^{p_k}$ boundedness for some rough operators, J. Math. Anal. Appl. 203, 66–186, 1996.
  • [3] Y. Ding and S. Lu, Weighted norm inequalities for fractional integral operators with rough kernel, Canad. J. Math. 50, 29–39 1998.
  • [4] Y. Ding and S. Lu, Homogeneous fractional integrals on Hardy spaces, Tohoku Math. J. 52, 153–162, 2000.
  • [5] A.D. Gadzhiev and I.A. Aliev, Riesz and Bessel potentials generated by the generalized shift operator and their inversions, (Russian) Theory of functions and approximations, Part 1 (Russian) (Saratov, 1988), 47–53, Saratov. Gos. Univ., Saratov, 1990.
  • [6] V.S. Guliyev, A. Serbetci and I. Ekincioglu, On boundedness of the generalized Bpotential integral operators in the Lorentz spaces, Integral Transforms Spec. Funct. 18 (12), 885–895, 2007.
  • [7] V.S. Guliyev, A. Serbetci and I. Ekincioglu, Necessary and sufficient conditions for the boundedness of rough B-fractional integral operators in the Lorentz spaces, J. Math. Anal. Appl. 336 (1), 425–437, 2007.
  • [8] V.S. Guliyev, A. Serbetci and I. Ekincioglu, The boundedness of the generalized anisotropic potentials with rough kernels in the Lorentz spaces, Integral Transforms Spec. Funct. 22 (12), 919–935, 2011.
  • [9] I.A. Kipriyanov, Fourier-Bessel transformations and imbedding theorems, Trudy Math. Inst. Steklov, 89, 130–213, 1967.
  • [10] B.M. Levitan, Bessel function expansions in series and Fourier integrals, Uspekhi Mat. Nauk. (Russian), 6 (2), 102–143, 1951.
  • [11] L.N. Lyakhov, Multipliers of the Mixed Fourier-Bessel transform, Proc. Steklov Inst. Math. 214, 234–249, 1997.
  • [12] B. Muckenhoupt and R.L. Wheeden, Weighted norm inequalities for singular and fractional integrals, Trans. Amer. Math. Soc. 161, 249–258, 1971.
  • [13] E.M. Stein, Singular Integrals And Differentiability Properties of Functions, Princeton New Jersey, Princeton Uni. Press, 1970.
  • [14] E.M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, N. J., 1993.
  • [15] E.M. Stein and G. Weiss, On the theory of harmonic functions of several variables I. The theory of Hp-spaces, Acta Math. 103, 25–62, 1960.
  • [16] M.H. Taibleson and G.Weiss, The molecular characterization of certain Hardy spaces, Asterisque 77 Societe Math. de France, 67–149, 1980.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Cansu Keskin 0000-0002-5636-1214

İsmail Ekincioğlu 0000-0002-0998-4419

Publication Date October 6, 2020
Published in Issue Year 2020

Cite

APA Keskin, C., & Ekincioğlu, İ. (2020). Some inequalities for homogeneous $B_n$-potential type integrals on $H^{p}_{\Delta_{\nu}}$ Hardy spaces. Hacettepe Journal of Mathematics and Statistics, 49(5), 1667-1675. https://doi.org/10.15672/hujms.520995
AMA Keskin C, Ekincioğlu İ. Some inequalities for homogeneous $B_n$-potential type integrals on $H^{p}_{\Delta_{\nu}}$ Hardy spaces. Hacettepe Journal of Mathematics and Statistics. October 2020;49(5):1667-1675. doi:10.15672/hujms.520995
Chicago Keskin, Cansu, and İsmail Ekincioğlu. “Some Inequalities for Homogeneous $B_n$-Potential Type Integrals on $H^{p}_{\Delta_{\nu}}$ Hardy Spaces”. Hacettepe Journal of Mathematics and Statistics 49, no. 5 (October 2020): 1667-75. https://doi.org/10.15672/hujms.520995.
EndNote Keskin C, Ekincioğlu İ (October 1, 2020) Some inequalities for homogeneous $B_n$-potential type integrals on $H^{p}_{\Delta_{\nu}}$ Hardy spaces. Hacettepe Journal of Mathematics and Statistics 49 5 1667–1675.
IEEE C. Keskin and İ. Ekincioğlu, “Some inequalities for homogeneous $B_n$-potential type integrals on $H^{p}_{\Delta_{\nu}}$ Hardy spaces”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 5, pp. 1667–1675, 2020, doi: 10.15672/hujms.520995.
ISNAD Keskin, Cansu - Ekincioğlu, İsmail. “Some Inequalities for Homogeneous $B_n$-Potential Type Integrals on $H^{p}_{\Delta_{\nu}}$ Hardy Spaces”. Hacettepe Journal of Mathematics and Statistics 49/5 (October 2020), 1667-1675. https://doi.org/10.15672/hujms.520995.
JAMA Keskin C, Ekincioğlu İ. Some inequalities for homogeneous $B_n$-potential type integrals on $H^{p}_{\Delta_{\nu}}$ Hardy spaces. Hacettepe Journal of Mathematics and Statistics. 2020;49:1667–1675.
MLA Keskin, Cansu and İsmail Ekincioğlu. “Some Inequalities for Homogeneous $B_n$-Potential Type Integrals on $H^{p}_{\Delta_{\nu}}$ Hardy Spaces”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 5, 2020, pp. 1667-75, doi:10.15672/hujms.520995.
Vancouver Keskin C, Ekincioğlu İ. Some inequalities for homogeneous $B_n$-potential type integrals on $H^{p}_{\Delta_{\nu}}$ Hardy spaces. Hacettepe Journal of Mathematics and Statistics. 2020;49(5):1667-75.