Year 2020,
, 1667 - 1675, 06.10.2020
Cansu Keskin
,
İsmail Ekincioğlu
References
- [1] S. Chanillo, D. Watson and R.L. Wheeden, Some integral and maximal operators
related to star-like, Studia Math. 107, 223–255, 1993.
- [2] Y. Ding and S. Lu, The $L^{p_1}\times\ldots\times L^{p_k}$ boundedness for some rough operators, J.
Math. Anal. Appl. 203, 66–186, 1996.
- [3] Y. Ding and S. Lu, Weighted norm inequalities for fractional integral operators with
rough kernel, Canad. J. Math. 50, 29–39 1998.
- [4] Y. Ding and S. Lu, Homogeneous fractional integrals on Hardy spaces, Tohoku Math.
J. 52, 153–162, 2000.
- [5] A.D. Gadzhiev and I.A. Aliev, Riesz and Bessel potentials generated by the generalized
shift operator and their inversions, (Russian) Theory of functions and approximations,
Part 1 (Russian) (Saratov, 1988), 47–53, Saratov. Gos. Univ., Saratov, 1990.
- [6] V.S. Guliyev, A. Serbetci and I. Ekincioglu, On boundedness of the generalized Bpotential
integral operators in the Lorentz spaces, Integral Transforms Spec. Funct.
18 (12), 885–895, 2007.
- [7] V.S. Guliyev, A. Serbetci and I. Ekincioglu, Necessary and sufficient conditions for the
boundedness of rough B-fractional integral operators in the Lorentz spaces, J. Math.
Anal. Appl. 336 (1), 425–437, 2007.
- [8] V.S. Guliyev, A. Serbetci and I. Ekincioglu, The boundedness of the generalized
anisotropic potentials with rough kernels in the Lorentz spaces, Integral Transforms
Spec. Funct. 22 (12), 919–935, 2011.
- [9] I.A. Kipriyanov, Fourier-Bessel transformations and imbedding theorems, Trudy
Math. Inst. Steklov, 89, 130–213, 1967.
- [10] B.M. Levitan, Bessel function expansions in series and Fourier integrals, Uspekhi
Mat. Nauk. (Russian), 6 (2), 102–143, 1951.
- [11] L.N. Lyakhov, Multipliers of the Mixed Fourier-Bessel transform, Proc. Steklov Inst.
Math. 214, 234–249, 1997.
- [12] B. Muckenhoupt and R.L. Wheeden, Weighted norm inequalities for singular and
fractional integrals, Trans. Amer. Math. Soc. 161, 249–258, 1971.
- [13] E.M. Stein, Singular Integrals And Differentiability Properties of Functions, Princeton
New Jersey, Princeton Uni. Press, 1970.
- [14] E.M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory
Integrals, Princeton University Press, Princeton, N. J., 1993.
- [15] E.M. Stein and G. Weiss, On the theory of harmonic functions of several variables I.
The theory of Hp-spaces, Acta Math. 103, 25–62, 1960.
- [16] M.H. Taibleson and G.Weiss, The molecular characterization of certain Hardy spaces,
Asterisque 77 Societe Math. de France, 67–149, 1980.
Some inequalities for homogeneous $B_n$-potential type integrals on $H^{p}_{\Delta_{\nu}}$ Hardy spaces
Year 2020,
, 1667 - 1675, 06.10.2020
Cansu Keskin
,
İsmail Ekincioğlu
Abstract
We prove the norm inequalities for potential operators and fractional integrals related to generalized shift operator defined on spaces of homogeneous type. We show that these operators are bounded from $H^{p}_{\Delta_{\nu}}$ to $H^{q}_{\Delta_{\nu}}$, for $\frac{1}{q}=\frac{1}{p}-\frac{\alpha}{Q}$, provided $0<\alpha<\frac{1}{2}$, and $\alpha<\beta\leq 1$ and $\frac{Q}{Q+\beta}<p\leq\frac{Q}{Q+\alpha}$. By applying atomic-molecular decomposition of $H^{p}_{\Delta_{\nu}}$ Hardy space, we obtain the boundedness of homogeneous fractional type integrals which extends the Stein-Weiss and Taibleson-Weiss's results for the boundedness of the $B_n$-Riesz potential operator on $H^{p}_{\Delta_{\nu}}$ Hardy space.
References
- [1] S. Chanillo, D. Watson and R.L. Wheeden, Some integral and maximal operators
related to star-like, Studia Math. 107, 223–255, 1993.
- [2] Y. Ding and S. Lu, The $L^{p_1}\times\ldots\times L^{p_k}$ boundedness for some rough operators, J.
Math. Anal. Appl. 203, 66–186, 1996.
- [3] Y. Ding and S. Lu, Weighted norm inequalities for fractional integral operators with
rough kernel, Canad. J. Math. 50, 29–39 1998.
- [4] Y. Ding and S. Lu, Homogeneous fractional integrals on Hardy spaces, Tohoku Math.
J. 52, 153–162, 2000.
- [5] A.D. Gadzhiev and I.A. Aliev, Riesz and Bessel potentials generated by the generalized
shift operator and their inversions, (Russian) Theory of functions and approximations,
Part 1 (Russian) (Saratov, 1988), 47–53, Saratov. Gos. Univ., Saratov, 1990.
- [6] V.S. Guliyev, A. Serbetci and I. Ekincioglu, On boundedness of the generalized Bpotential
integral operators in the Lorentz spaces, Integral Transforms Spec. Funct.
18 (12), 885–895, 2007.
- [7] V.S. Guliyev, A. Serbetci and I. Ekincioglu, Necessary and sufficient conditions for the
boundedness of rough B-fractional integral operators in the Lorentz spaces, J. Math.
Anal. Appl. 336 (1), 425–437, 2007.
- [8] V.S. Guliyev, A. Serbetci and I. Ekincioglu, The boundedness of the generalized
anisotropic potentials with rough kernels in the Lorentz spaces, Integral Transforms
Spec. Funct. 22 (12), 919–935, 2011.
- [9] I.A. Kipriyanov, Fourier-Bessel transformations and imbedding theorems, Trudy
Math. Inst. Steklov, 89, 130–213, 1967.
- [10] B.M. Levitan, Bessel function expansions in series and Fourier integrals, Uspekhi
Mat. Nauk. (Russian), 6 (2), 102–143, 1951.
- [11] L.N. Lyakhov, Multipliers of the Mixed Fourier-Bessel transform, Proc. Steklov Inst.
Math. 214, 234–249, 1997.
- [12] B. Muckenhoupt and R.L. Wheeden, Weighted norm inequalities for singular and
fractional integrals, Trans. Amer. Math. Soc. 161, 249–258, 1971.
- [13] E.M. Stein, Singular Integrals And Differentiability Properties of Functions, Princeton
New Jersey, Princeton Uni. Press, 1970.
- [14] E.M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory
Integrals, Princeton University Press, Princeton, N. J., 1993.
- [15] E.M. Stein and G. Weiss, On the theory of harmonic functions of several variables I.
The theory of Hp-spaces, Acta Math. 103, 25–62, 1960.
- [16] M.H. Taibleson and G.Weiss, The molecular characterization of certain Hardy spaces,
Asterisque 77 Societe Math. de France, 67–149, 1980.