[1] J. Agler and M. Stankus, m-isometric transformations of Hilbert space. I, Integral
Equations Operator Theory 21, 383–429, 1995.
[2] T. Bermúdez, A. Martinón, V. Müller and J. A. Noda, Perturbation of m-Isometries
by Nilpotent Operators, Abstr. Appl. Anal. 2014, Article ID 745479, 6 pages, 2014.
[3] T. Bermúdez, A. Martinón and J.A. Noda, Products of m-isometries, Linear Algebra
Appl. 438, 80–86, 2013.
[4] T. Bermúdez, A. Martinón and J.A. Noda, An isometry plus a nilpotent operator is
an m-isometry. Applications, J. Math. Anal. Appl. 407 (2), 505-512, 2013.
[5] T. Bermúdez, A. Martinón and J.A. Noda, Arithmetic Progressions and Its Applications
to (m, q)-Isometries: A Survey. Results Math. 69, 177-199, 2016.
[6] T. Bermúdez, C.D. Mendoza and A. Martinón, Powers of m-isometries, Studia Math.
208 (3), 2012.
[7] F. Botelho, J. Jamison and B. Zheng, Strict isometries of arbitrary orders, Linear
Algebra Appl. 436, 3303–3314, 2012.
[8] M. Ch¯o, S. Óta and K. Tanahashi, Invertible weighted shift operators which are misometries,
Proc. Amer. Math. Soc. 141 (12), 4241-4247, 2013.
[9] B.P. Duggal, Tensor product of n-isometries, Linear Algebra Appl. 437, 307-318,
2012.
[10] C. Gu, Elementary operators which are m-isometries, Linear Algebra Appl. 451,
49-64, 2014.
[11] C. Gu, Structures of left n-invertible operators and their applications, Studia Math.
226 (3), 189-211, 2015.
[12] C. Gu, Functional calculus for m-isometries and related operators on Hilbert spaces
and Banach spaces, Acta Sci. Math. (Szeged) 81, 605–641, 2015.
[13] C. Gu, Examples of m-isometric tuples of operators on a Hilbert space, J. Korean
Math. Soc. 55 (1), 225–251, 2018.
[14] C. Gu and M. Stankus, Some results on higher order isometries and symmetries:
Products and sums with a nilpotent operator, Linear Algebra Appl. 469, 500-509,
2015.
[15] J. Kyu Han, H. Youl Lee and W. Young Lee, Invertible completions of 2 × 2 upper
triangular operator matrices, Proc. Amer. Math. Soc. 128, 119–123, 1999.
[16] O.A. Mahmoud Sid Ahmed, m-isometric operators on Banach spaces, Asian-
European J. Math. 3 (1), 19 pages, 2010.
[17] O.A. Mahmoud Sid Ahmed, Generalization of m-partial isometries on a Hilbert
spaces, Int. J. Pure Appl. Math. 104 (4), 599–619, 2015.
[18] S. Mecheri and S. M. Patel, On quasi-2-isometric operators, Linear Multlinear Algebra
66 (5), 1019–1025, 2018.
[19] S. Mecheri and T. Prasad, On n-quasi-m-isometric operators, Asian-Eur. J. Math. 9
(3), 1650073, 8 pages, 2016.
[20] S.M. Patel, A note on quasi-isometries, Glas. Mat. 35 (55), 307–312, 2002.
The purpose of the present paper is to pursue further study of a class of linear bounded operators, known as $n$-quasi-$m$-isometric operators acting on an infinite complex separable Hilbert space ${\mathcal H}$. We give an equivalent condition for any $T$ to be $n$-quasi-$m$-isometric operator. Using this result we prove that any power of an $n$-quasi-$m$-isometric operator is also an $n$-quasi-$m$-isometric operator. In general the converse is not true. However, we prove that if $T^r$ and $T^{r+1}$ are $n$-quasi-$m$-isometries for a positive integer $r$, then T is an $n$-quasi-$m$-isometric operator. We study the sum of an $n$-quasi-$m$-isometric operator with a nilpotent operator. We also study the product and tensor product of two $n$-quasi-$m$-isometries. Further, we define $n$-quasi strict $m$-isometric operators and prove their basic properties.
[1] J. Agler and M. Stankus, m-isometric transformations of Hilbert space. I, Integral
Equations Operator Theory 21, 383–429, 1995.
[2] T. Bermúdez, A. Martinón, V. Müller and J. A. Noda, Perturbation of m-Isometries
by Nilpotent Operators, Abstr. Appl. Anal. 2014, Article ID 745479, 6 pages, 2014.
[3] T. Bermúdez, A. Martinón and J.A. Noda, Products of m-isometries, Linear Algebra
Appl. 438, 80–86, 2013.
[4] T. Bermúdez, A. Martinón and J.A. Noda, An isometry plus a nilpotent operator is
an m-isometry. Applications, J. Math. Anal. Appl. 407 (2), 505-512, 2013.
[5] T. Bermúdez, A. Martinón and J.A. Noda, Arithmetic Progressions and Its Applications
to (m, q)-Isometries: A Survey. Results Math. 69, 177-199, 2016.
[6] T. Bermúdez, C.D. Mendoza and A. Martinón, Powers of m-isometries, Studia Math.
208 (3), 2012.
[7] F. Botelho, J. Jamison and B. Zheng, Strict isometries of arbitrary orders, Linear
Algebra Appl. 436, 3303–3314, 2012.
[8] M. Ch¯o, S. Óta and K. Tanahashi, Invertible weighted shift operators which are misometries,
Proc. Amer. Math. Soc. 141 (12), 4241-4247, 2013.
[9] B.P. Duggal, Tensor product of n-isometries, Linear Algebra Appl. 437, 307-318,
2012.
[10] C. Gu, Elementary operators which are m-isometries, Linear Algebra Appl. 451,
49-64, 2014.
[11] C. Gu, Structures of left n-invertible operators and their applications, Studia Math.
226 (3), 189-211, 2015.
[12] C. Gu, Functional calculus for m-isometries and related operators on Hilbert spaces
and Banach spaces, Acta Sci. Math. (Szeged) 81, 605–641, 2015.
[13] C. Gu, Examples of m-isometric tuples of operators on a Hilbert space, J. Korean
Math. Soc. 55 (1), 225–251, 2018.
[14] C. Gu and M. Stankus, Some results on higher order isometries and symmetries:
Products and sums with a nilpotent operator, Linear Algebra Appl. 469, 500-509,
2015.
[15] J. Kyu Han, H. Youl Lee and W. Young Lee, Invertible completions of 2 × 2 upper
triangular operator matrices, Proc. Amer. Math. Soc. 128, 119–123, 1999.
[16] O.A. Mahmoud Sid Ahmed, m-isometric operators on Banach spaces, Asian-
European J. Math. 3 (1), 19 pages, 2010.
[17] O.A. Mahmoud Sid Ahmed, Generalization of m-partial isometries on a Hilbert
spaces, Int. J. Pure Appl. Math. 104 (4), 599–619, 2015.
[18] S. Mecheri and S. M. Patel, On quasi-2-isometric operators, Linear Multlinear Algebra
66 (5), 1019–1025, 2018.
[19] S. Mecheri and T. Prasad, On n-quasi-m-isometric operators, Asian-Eur. J. Math. 9
(3), 1650073, 8 pages, 2016.
[20] S.M. Patel, A note on quasi-isometries, Glas. Mat. 35 (55), 307–312, 2002.
Ould Ahmed Mahmoud, S. A., Saddi, A., & Gherairi, K. (2020). Some results on higher orders quasi-isometries. Hacettepe Journal of Mathematics and Statistics, 49(4), 1315-1333. https://doi.org/10.15672/hujms.532964
AMA
Ould Ahmed Mahmoud SA, Saddi A, Gherairi K. Some results on higher orders quasi-isometries. Hacettepe Journal of Mathematics and Statistics. August 2020;49(4):1315-1333. doi:10.15672/hujms.532964
Chicago
Ould Ahmed Mahmoud, Sid Ahmed, Adel Saddi, and Khadija Gherairi. “Some Results on Higher Orders Quasi-Isometries”. Hacettepe Journal of Mathematics and Statistics 49, no. 4 (August 2020): 1315-33. https://doi.org/10.15672/hujms.532964.
EndNote
Ould Ahmed Mahmoud SA, Saddi A, Gherairi K (August 1, 2020) Some results on higher orders quasi-isometries. Hacettepe Journal of Mathematics and Statistics 49 4 1315–1333.
IEEE
S. A. Ould Ahmed Mahmoud, A. Saddi, and K. Gherairi, “Some results on higher orders quasi-isometries”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 4, pp. 1315–1333, 2020, doi: 10.15672/hujms.532964.
ISNAD
Ould Ahmed Mahmoud, Sid Ahmed et al. “Some Results on Higher Orders Quasi-Isometries”. Hacettepe Journal of Mathematics and Statistics 49/4 (August 2020), 1315-1333. https://doi.org/10.15672/hujms.532964.
JAMA
Ould Ahmed Mahmoud SA, Saddi A, Gherairi K. Some results on higher orders quasi-isometries. Hacettepe Journal of Mathematics and Statistics. 2020;49:1315–1333.
MLA
Ould Ahmed Mahmoud, Sid Ahmed et al. “Some Results on Higher Orders Quasi-Isometries”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 4, 2020, pp. 1315-33, doi:10.15672/hujms.532964.
Vancouver
Ould Ahmed Mahmoud SA, Saddi A, Gherairi K. Some results on higher orders quasi-isometries. Hacettepe Journal of Mathematics and Statistics. 2020;49(4):1315-33.