Research Article
BibTex RIS Cite
Year 2020, , 120 - 135, 06.02.2020
https://doi.org/10.15672/HJMS.2019.667

Abstract

References

  • [1] S. Amari, Information geometry of the EM and em algorithms for neural networks, Neural Networks, 8 (9), 1379–1408, 1995.
  • [2] S. Amari and H. Nagaoka, Methods of information geometry, American Mathematical Society, 2000.
  • [3] V. Balan, H.V. Grushevskaya,N.G. Krylova, G.G. Krylov, and I.V. Lipnevich, Two- dimensional first-order phase transition as signature change event in contact statisti- cal manifolds with Finsler metric, Appl. Sci. 21, 11–26, 2019.
  • [4] M. Belkin, P. Niyogi and V.Sindhwani, Manifold regularization: a geometric frame- work for learning from labeled and unlabeled examples, J. Mach. Learn. Res. 7, 2399– 2434, 2006.
  • [5] M. Burgin, Theory of information: fundamentality, diversity and unification, World Scientific Series in Information Studies, 2009.
  • [6] A. Caticha, Geometry from information geometry, https://arxiv.org/abs/1512. 09076v1.
  • [7] A. Caticha, The information geometry of space and time, https://arxiv.org/abs/ gr-qc/0508108.
  • [8] N.N. Cencov, Statistical decision rules and optimal inference, Amer. Mathematical Society: Translations of Mathematical Monographs, 1982.
  • [9] R.A. Fisher, On the mathematical foundations of theoretical statistics, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 222, 309–368, 1922.
  • [10] H. Furuhata, Hypersurfaces in statistical manifolds, Diff. Geom. Appl. 27, 420–429, 2009.
  • [11] H. Furuhata, I. Hasegawa, Y. Okuyama, K. Sato and M.H. Shahid, Sasakian statistical manifolds, J. Geom. Phys. 117, 179–186, 2017.
  • [12] S. Ianuş, Statistical manifolds and tangent bundles, Sci. Bull. Univ. Politechnica of Bucharest Ser. D, 56, 29–34, 1994.
  • [13] S. Lauritzen, Statistical manifolds, in: Differential Geometry in Statistical Inference, IMS Lecture Notes 10, 163–216, 1987.
  • [14] H. Matsuzoe and J.I. Inoguchi, Statistical structures on tangent bundles, APPS. Appl. Sci. 5 (1), 55–57, 2003.
  • [15] J.M. Oller and C.N. Caudras, Rao’s distance for negative multinomial distributions, Sankhya A, 47 (1), 75–83, 1985.
  • [16] C.R. Rao, Information and accuracy attainable in estimation of statistical parameters, Bull. Cal. Math. Soc. 37, 81–91, 1945.
  • [17] K. Sun and S. Marchand-Maillet, An information geometry of statistical manifold learning, Proceedings of the 31st International Conference on Machine Learning (ICML-14), 1–9, 2014.
  • [18] K. Yano and S. Ishihara, Tangent and cotangent bundles, Marcel Dekker Inc., New York, 1973.

Statistical structures on the tangent bundle of a statistical manifold with Sasaki metric

Year 2020, , 120 - 135, 06.02.2020
https://doi.org/10.15672/HJMS.2019.667

Abstract

The first part of the paper is devoted to the classification of the statistical structures which live on the tangent bundle of a statistical manifold endowed with a Sasaki metric. Further, considering a Kähler structure on the base statistical manifold, we introduce a family of almost complex structures on the tangent bundle equipped with the Sasaki metric, and find equivalent conditions for which this family induces a Kähler structure. Finally, we derive equivalent conditions for existence of holomorphic structures on the tangent bundle equipped with the Sasaki metric in the presence of a statistical structure. Several illustrative examples are provided, as well.

References

  • [1] S. Amari, Information geometry of the EM and em algorithms for neural networks, Neural Networks, 8 (9), 1379–1408, 1995.
  • [2] S. Amari and H. Nagaoka, Methods of information geometry, American Mathematical Society, 2000.
  • [3] V. Balan, H.V. Grushevskaya,N.G. Krylova, G.G. Krylov, and I.V. Lipnevich, Two- dimensional first-order phase transition as signature change event in contact statisti- cal manifolds with Finsler metric, Appl. Sci. 21, 11–26, 2019.
  • [4] M. Belkin, P. Niyogi and V.Sindhwani, Manifold regularization: a geometric frame- work for learning from labeled and unlabeled examples, J. Mach. Learn. Res. 7, 2399– 2434, 2006.
  • [5] M. Burgin, Theory of information: fundamentality, diversity and unification, World Scientific Series in Information Studies, 2009.
  • [6] A. Caticha, Geometry from information geometry, https://arxiv.org/abs/1512. 09076v1.
  • [7] A. Caticha, The information geometry of space and time, https://arxiv.org/abs/ gr-qc/0508108.
  • [8] N.N. Cencov, Statistical decision rules and optimal inference, Amer. Mathematical Society: Translations of Mathematical Monographs, 1982.
  • [9] R.A. Fisher, On the mathematical foundations of theoretical statistics, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 222, 309–368, 1922.
  • [10] H. Furuhata, Hypersurfaces in statistical manifolds, Diff. Geom. Appl. 27, 420–429, 2009.
  • [11] H. Furuhata, I. Hasegawa, Y. Okuyama, K. Sato and M.H. Shahid, Sasakian statistical manifolds, J. Geom. Phys. 117, 179–186, 2017.
  • [12] S. Ianuş, Statistical manifolds and tangent bundles, Sci. Bull. Univ. Politechnica of Bucharest Ser. D, 56, 29–34, 1994.
  • [13] S. Lauritzen, Statistical manifolds, in: Differential Geometry in Statistical Inference, IMS Lecture Notes 10, 163–216, 1987.
  • [14] H. Matsuzoe and J.I. Inoguchi, Statistical structures on tangent bundles, APPS. Appl. Sci. 5 (1), 55–57, 2003.
  • [15] J.M. Oller and C.N. Caudras, Rao’s distance for negative multinomial distributions, Sankhya A, 47 (1), 75–83, 1985.
  • [16] C.R. Rao, Information and accuracy attainable in estimation of statistical parameters, Bull. Cal. Math. Soc. 37, 81–91, 1945.
  • [17] K. Sun and S. Marchand-Maillet, An information geometry of statistical manifold learning, Proceedings of the 31st International Conference on Machine Learning (ICML-14), 1–9, 2014.
  • [18] K. Yano and S. Ishihara, Tangent and cotangent bundles, Marcel Dekker Inc., New York, 1973.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Vladimir Balan 0000-0002-0124-4205

E. Peyghan 0000-0002-2713-6253

Esa Sharahi This is me 0000-0002-1749-7469

Publication Date February 6, 2020
Published in Issue Year 2020

Cite

APA Balan, V., Peyghan, E., & Sharahi, E. (2020). Statistical structures on the tangent bundle of a statistical manifold with Sasaki metric. Hacettepe Journal of Mathematics and Statistics, 49(1), 120-135. https://doi.org/10.15672/HJMS.2019.667
AMA Balan V, Peyghan E, Sharahi E. Statistical structures on the tangent bundle of a statistical manifold with Sasaki metric. Hacettepe Journal of Mathematics and Statistics. February 2020;49(1):120-135. doi:10.15672/HJMS.2019.667
Chicago Balan, Vladimir, E. Peyghan, and Esa Sharahi. “Statistical Structures on the Tangent Bundle of a Statistical Manifold With Sasaki Metric”. Hacettepe Journal of Mathematics and Statistics 49, no. 1 (February 2020): 120-35. https://doi.org/10.15672/HJMS.2019.667.
EndNote Balan V, Peyghan E, Sharahi E (February 1, 2020) Statistical structures on the tangent bundle of a statistical manifold with Sasaki metric. Hacettepe Journal of Mathematics and Statistics 49 1 120–135.
IEEE V. Balan, E. Peyghan, and E. Sharahi, “Statistical structures on the tangent bundle of a statistical manifold with Sasaki metric”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 1, pp. 120–135, 2020, doi: 10.15672/HJMS.2019.667.
ISNAD Balan, Vladimir et al. “Statistical Structures on the Tangent Bundle of a Statistical Manifold With Sasaki Metric”. Hacettepe Journal of Mathematics and Statistics 49/1 (February 2020), 120-135. https://doi.org/10.15672/HJMS.2019.667.
JAMA Balan V, Peyghan E, Sharahi E. Statistical structures on the tangent bundle of a statistical manifold with Sasaki metric. Hacettepe Journal of Mathematics and Statistics. 2020;49:120–135.
MLA Balan, Vladimir et al. “Statistical Structures on the Tangent Bundle of a Statistical Manifold With Sasaki Metric”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 1, 2020, pp. 120-35, doi:10.15672/HJMS.2019.667.
Vancouver Balan V, Peyghan E, Sharahi E. Statistical structures on the tangent bundle of a statistical manifold with Sasaki metric. Hacettepe Journal of Mathematics and Statistics. 2020;49(1):120-35.