Research Article
BibTex RIS Cite

Year 2020, Volume: 49 Issue: 6, 2007 - 2016, 08.12.2020
https://doi.org/10.15672/hujms.551596

Abstract

References

  • [1] V. Berestovskii and Y. Nikonorov, Killing vector fields of constant length on Riemannian manifolds, Siberian Math. J. 49 (3), 395–407, 2008.
  • [2] A.L. Besse, Einstein Manifolds, Springer Verlag, 1987.
  • [3] D.E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer Verlag, 1976.
  • [4] C. Boyer and K. Galicki, Einstein manifolds and contact geometry, Proc. Amer. Math. Soc. 129 (8), 2419–2430, 2001.
  • [5] B. Chow, P. Lu and L. Ni, Hamilton’s Ricci Flow, Graduate studies in Mathematics, 77, AMS Scientific Press, 2010.
  • [6] S. Deshmukh, Real hypersurfaces of a complex space form, Proc. Math. Sci. 121 (2), 171–179, 2011.
  • [7] S. Deshmukh, Jacobi-type vector fields on Ricci solitons, Bull. Math. Soc. Sci. Math. Roumanie 55 (103), No. 1, 41–50, 2012.
  • [8] A. Hurtado, Stability numbers in K-contact manifolds, Diff. Geom. Appl. 26 (3), 227–242, 2008.
  • [9] C.J.G. Manchado and J.D. Perez, On the structure vector field of a real hypersurface in complex two-plane Grassmannians, Cent. Eur. J. Math. 10 (2), 451–455, 2012.
  • [10] A. Mastromartino and Y. Villarroel, The annihilator of a K-contact manifold, Math. Rep. (Bucur.) 6 (56), 431–443, 2004.
  • [11] B.C Montano, A.D. Nikola, J.C. Marrero, and I. Yudin, Examples of compact K-contact manifolds with no Sasakian metric, Int. J. Geom. Methods Mod. Phys. 11 (9), 1460023, 10 pp., 2014.
  • [12] M. Okumura, Certain almost contact hypersurfaces in Kaehler manifolds of constant holomorphic sectional curvature, Tohoku Math. J. (2), 16, 270–284, 1964.
  • [13] Z. Olszak, On contact metric manifolds, Tohoku Math. J. (2), 31, 247–253, 1979.
  • [14] D. Perrone, Contact metric manifolds whose characteristic vector field is harmonic vector field, Differential Geom. Appl. 20, 367–378, 2004.
  • [15] T. Yamazaki, On a surgery of K-contact manifolds, Kodai Math. J. 24 (2), 214–225, 2001.
  • [16] T. Yamazaki, A construction of K-contact manifolds by a fiber join, Tohoku Math. J. (2), 51 (4), 433–446, 1999.
  • [17] A. Yildiz and E. Ata, On a type of K-contact manifolds, Hacet. J. Math. Stat. 41 (4), 567–571, 2012.

A note on contact metric manifolds

Year 2020, Volume: 49 Issue: 6, 2007 - 2016, 08.12.2020
https://doi.org/10.15672/hujms.551596

Abstract

In this paper, first we obtain several necessary and sufficient conditions for a contact metric manifold to be a K-contact manifold and then it is shown that if the Ricci operator of a complete K-contact manifold satisfies a condition like a Codazzi tensor, then it is necessarily a Sasakian manifold.

References

  • [1] V. Berestovskii and Y. Nikonorov, Killing vector fields of constant length on Riemannian manifolds, Siberian Math. J. 49 (3), 395–407, 2008.
  • [2] A.L. Besse, Einstein Manifolds, Springer Verlag, 1987.
  • [3] D.E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer Verlag, 1976.
  • [4] C. Boyer and K. Galicki, Einstein manifolds and contact geometry, Proc. Amer. Math. Soc. 129 (8), 2419–2430, 2001.
  • [5] B. Chow, P. Lu and L. Ni, Hamilton’s Ricci Flow, Graduate studies in Mathematics, 77, AMS Scientific Press, 2010.
  • [6] S. Deshmukh, Real hypersurfaces of a complex space form, Proc. Math. Sci. 121 (2), 171–179, 2011.
  • [7] S. Deshmukh, Jacobi-type vector fields on Ricci solitons, Bull. Math. Soc. Sci. Math. Roumanie 55 (103), No. 1, 41–50, 2012.
  • [8] A. Hurtado, Stability numbers in K-contact manifolds, Diff. Geom. Appl. 26 (3), 227–242, 2008.
  • [9] C.J.G. Manchado and J.D. Perez, On the structure vector field of a real hypersurface in complex two-plane Grassmannians, Cent. Eur. J. Math. 10 (2), 451–455, 2012.
  • [10] A. Mastromartino and Y. Villarroel, The annihilator of a K-contact manifold, Math. Rep. (Bucur.) 6 (56), 431–443, 2004.
  • [11] B.C Montano, A.D. Nikola, J.C. Marrero, and I. Yudin, Examples of compact K-contact manifolds with no Sasakian metric, Int. J. Geom. Methods Mod. Phys. 11 (9), 1460023, 10 pp., 2014.
  • [12] M. Okumura, Certain almost contact hypersurfaces in Kaehler manifolds of constant holomorphic sectional curvature, Tohoku Math. J. (2), 16, 270–284, 1964.
  • [13] Z. Olszak, On contact metric manifolds, Tohoku Math. J. (2), 31, 247–253, 1979.
  • [14] D. Perrone, Contact metric manifolds whose characteristic vector field is harmonic vector field, Differential Geom. Appl. 20, 367–378, 2004.
  • [15] T. Yamazaki, On a surgery of K-contact manifolds, Kodai Math. J. 24 (2), 214–225, 2001.
  • [16] T. Yamazaki, A construction of K-contact manifolds by a fiber join, Tohoku Math. J. (2), 51 (4), 433–446, 1999.
  • [17] A. Yildiz and E. Ata, On a type of K-contact manifolds, Hacet. J. Math. Stat. 41 (4), 567–571, 2012.
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Sharief Deshmukh 0000-0003-3700-8164

Amira Ishan This is me 0000-0002-1729-4805

Publication Date December 8, 2020
Published in Issue Year 2020 Volume: 49 Issue: 6

Cite

APA Deshmukh, S., & Ishan, A. (2020). A note on contact metric manifolds. Hacettepe Journal of Mathematics and Statistics, 49(6), 2007-2016. https://doi.org/10.15672/hujms.551596
AMA Deshmukh S, Ishan A. A note on contact metric manifolds. Hacettepe Journal of Mathematics and Statistics. December 2020;49(6):2007-2016. doi:10.15672/hujms.551596
Chicago Deshmukh, Sharief, and Amira Ishan. “A Note on Contact Metric Manifolds”. Hacettepe Journal of Mathematics and Statistics 49, no. 6 (December 2020): 2007-16. https://doi.org/10.15672/hujms.551596.
EndNote Deshmukh S, Ishan A (December 1, 2020) A note on contact metric manifolds. Hacettepe Journal of Mathematics and Statistics 49 6 2007–2016.
IEEE S. Deshmukh and A. Ishan, “A note on contact metric manifolds”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 6, pp. 2007–2016, 2020, doi: 10.15672/hujms.551596.
ISNAD Deshmukh, Sharief - Ishan, Amira. “A Note on Contact Metric Manifolds”. Hacettepe Journal of Mathematics and Statistics 49/6 (December2020), 2007-2016. https://doi.org/10.15672/hujms.551596.
JAMA Deshmukh S, Ishan A. A note on contact metric manifolds. Hacettepe Journal of Mathematics and Statistics. 2020;49:2007–2016.
MLA Deshmukh, Sharief and Amira Ishan. “A Note on Contact Metric Manifolds”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 6, 2020, pp. 2007-16, doi:10.15672/hujms.551596.
Vancouver Deshmukh S, Ishan A. A note on contact metric manifolds. Hacettepe Journal of Mathematics and Statistics. 2020;49(6):2007-16.