Research Article
BibTex RIS Cite
Year 2020, , 1695 - 1705, 06.10.2020
https://doi.org/10.15672/hujms.557072

Abstract

References

  • [1] R.M. Ali, S.K. Lee, V. Ravichandran, and S. Supramaniam, Coefficient estimates for bi-univalent Ma–Minda starlike and convex functions, Appl. Math. Lett. 25, 344–351, 2012.
  • [2] D.A. Brannan, and T.S. Taha, On some classes of bi-univalent functions, Studia Univ. Babe-Bolyai Math. 31, 70-77, 1986.
  • [3] S. Bulut, Coefficient estimates for a subclass of parabolic bi-starlike functions, Afr. Math. 29, 331-338, 2018.
  • [4] M. Çağlar, H. Orhan and N. Yağmur, Coefficient bounds for new subclasses of biunivalent functions, Filomat 27, 1165-1171, 2013.
  • [5] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal. 2, 49–60, 2013.
  • [6] B.A. Frasin and M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24, 1569–1573, 2011.
  • [7] J.M. Jahangiri and S.G. Hamidi, Coefficient estimates for certain classes of biunivalent functions, Int. J. Math. Math. Sci. Article ID 190560, 4 pp. 2013.
  • [8] J.M. Jahangiri, S.G. Hamidi and S.A. Halim, Coefficients of bi-univalent functions with positive real part derivatives, Bull. Malay. Math. Sci. Soc. 37, 633-640, 2014.
  • [9] J.M. Jahangiri, N. Magesh and J. Yamini, Fekete–Szegö inequalities for classes of bi-starlike and bi-convex functions, Electron. J. Math. Anal. Appl. 3, 133–140, 2015.
  • [10] F.R. Keogh and E.P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20, 8–12, 1969.
  • [11] S.S. Kumar, V. Kumar and V. Ravichandran, Estimates for the initial coefficients of bi-univalent functions, Tamsui Oxford J. Inform. Math. Sci. 29, 487–504, 2013.
  • [12] W.C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis, Tianjin, 1992; Conf. Proc. Lecture. Notes Anal. I, Int Press, Cambridge, MA, 157–169, 1994.
  • [13] H. Orhan, N. Magesh and V.K. Balaji, Fekete–Szegö problem for certain classes of Ma-Minda bi-univalent functions, Afr. Math. 27, 889–897, 2016.
  • [14] V. Ravichandran, Y. Polatoğlu, M. Bolcal and A. Şen, Certain subclasses of starlike and convex functions of complex order, Hacettepe J. Math. Stat. 34, 9–15, 2005.
  • [15] H.M. Srivastava, S. Bulut, M. Çağlar and N. Yağmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27, 831-842, 2013.
  • [16] H.M. Srivastava, S.S Eker, and R.M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat 29, 1839–1845, 2015.
  • [17] H.M. Srivastava, A.K. Mishra, and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23, 1188–1192, 2010.
  • [18] Q.H. Xu, Y.C. Gui and H.M. Srivastava, Coefficient estimates for certain subclasses of analytic functions of complex order, Taiwanese J. Math. 15, 2377-2386, 2011.
  • [19] Q.H. Xu, Y.C. Gui and H.M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25, 990–994, 2012.
  • [20] Q.H. Xu, H.G. Xiao and H.M Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218, 11461–11465, 2012.
  • [21] P. Zaprawa, Estimates of Initial Coefficients for Bi-Univalent Functions, Abst. Appl. Anal. Article ID 357480, 6 pp. 2014.
  • [22] P. Zaprawa, On the Fekete–Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin 21, 169–178, 2014.

Fekete-Szegö problem for generalized bi-subordinate functions of complex order

Year 2020, , 1695 - 1705, 06.10.2020
https://doi.org/10.15672/hujms.557072

Abstract

In this paper, we obtain the Fekete-Szegö inequality for the generalized bi-subordinate functions of complex order. The various results, which are presented in this paper, would generalize those in related works of several earlier authors.

******************************************************************************************************************************

******************************************************************************************************************************

******************************************************************************************************************************

References

  • [1] R.M. Ali, S.K. Lee, V. Ravichandran, and S. Supramaniam, Coefficient estimates for bi-univalent Ma–Minda starlike and convex functions, Appl. Math. Lett. 25, 344–351, 2012.
  • [2] D.A. Brannan, and T.S. Taha, On some classes of bi-univalent functions, Studia Univ. Babe-Bolyai Math. 31, 70-77, 1986.
  • [3] S. Bulut, Coefficient estimates for a subclass of parabolic bi-starlike functions, Afr. Math. 29, 331-338, 2018.
  • [4] M. Çağlar, H. Orhan and N. Yağmur, Coefficient bounds for new subclasses of biunivalent functions, Filomat 27, 1165-1171, 2013.
  • [5] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal. 2, 49–60, 2013.
  • [6] B.A. Frasin and M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24, 1569–1573, 2011.
  • [7] J.M. Jahangiri and S.G. Hamidi, Coefficient estimates for certain classes of biunivalent functions, Int. J. Math. Math. Sci. Article ID 190560, 4 pp. 2013.
  • [8] J.M. Jahangiri, S.G. Hamidi and S.A. Halim, Coefficients of bi-univalent functions with positive real part derivatives, Bull. Malay. Math. Sci. Soc. 37, 633-640, 2014.
  • [9] J.M. Jahangiri, N. Magesh and J. Yamini, Fekete–Szegö inequalities for classes of bi-starlike and bi-convex functions, Electron. J. Math. Anal. Appl. 3, 133–140, 2015.
  • [10] F.R. Keogh and E.P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20, 8–12, 1969.
  • [11] S.S. Kumar, V. Kumar and V. Ravichandran, Estimates for the initial coefficients of bi-univalent functions, Tamsui Oxford J. Inform. Math. Sci. 29, 487–504, 2013.
  • [12] W.C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis, Tianjin, 1992; Conf. Proc. Lecture. Notes Anal. I, Int Press, Cambridge, MA, 157–169, 1994.
  • [13] H. Orhan, N. Magesh and V.K. Balaji, Fekete–Szegö problem for certain classes of Ma-Minda bi-univalent functions, Afr. Math. 27, 889–897, 2016.
  • [14] V. Ravichandran, Y. Polatoğlu, M. Bolcal and A. Şen, Certain subclasses of starlike and convex functions of complex order, Hacettepe J. Math. Stat. 34, 9–15, 2005.
  • [15] H.M. Srivastava, S. Bulut, M. Çağlar and N. Yağmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27, 831-842, 2013.
  • [16] H.M. Srivastava, S.S Eker, and R.M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat 29, 1839–1845, 2015.
  • [17] H.M. Srivastava, A.K. Mishra, and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23, 1188–1192, 2010.
  • [18] Q.H. Xu, Y.C. Gui and H.M. Srivastava, Coefficient estimates for certain subclasses of analytic functions of complex order, Taiwanese J. Math. 15, 2377-2386, 2011.
  • [19] Q.H. Xu, Y.C. Gui and H.M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25, 990–994, 2012.
  • [20] Q.H. Xu, H.G. Xiao and H.M Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218, 11461–11465, 2012.
  • [21] P. Zaprawa, Estimates of Initial Coefficients for Bi-Univalent Functions, Abst. Appl. Anal. Article ID 357480, 6 pp. 2014.
  • [22] P. Zaprawa, On the Fekete–Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin 21, 169–178, 2014.
There are 22 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Sercan Kazımoğlu 0000-0002-9570-8583

Erhan Deniz 0000-0002-9570-8583

Publication Date October 6, 2020
Published in Issue Year 2020

Cite

APA Kazımoğlu, S., & Deniz, E. (2020). Fekete-Szegö problem for generalized bi-subordinate functions of complex order. Hacettepe Journal of Mathematics and Statistics, 49(5), 1695-1705. https://doi.org/10.15672/hujms.557072
AMA Kazımoğlu S, Deniz E. Fekete-Szegö problem for generalized bi-subordinate functions of complex order. Hacettepe Journal of Mathematics and Statistics. October 2020;49(5):1695-1705. doi:10.15672/hujms.557072
Chicago Kazımoğlu, Sercan, and Erhan Deniz. “Fekete-Szegö Problem for Generalized Bi-Subordinate Functions of Complex Order”. Hacettepe Journal of Mathematics and Statistics 49, no. 5 (October 2020): 1695-1705. https://doi.org/10.15672/hujms.557072.
EndNote Kazımoğlu S, Deniz E (October 1, 2020) Fekete-Szegö problem for generalized bi-subordinate functions of complex order. Hacettepe Journal of Mathematics and Statistics 49 5 1695–1705.
IEEE S. Kazımoğlu and E. Deniz, “Fekete-Szegö problem for generalized bi-subordinate functions of complex order”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 5, pp. 1695–1705, 2020, doi: 10.15672/hujms.557072.
ISNAD Kazımoğlu, Sercan - Deniz, Erhan. “Fekete-Szegö Problem for Generalized Bi-Subordinate Functions of Complex Order”. Hacettepe Journal of Mathematics and Statistics 49/5 (October 2020), 1695-1705. https://doi.org/10.15672/hujms.557072.
JAMA Kazımoğlu S, Deniz E. Fekete-Szegö problem for generalized bi-subordinate functions of complex order. Hacettepe Journal of Mathematics and Statistics. 2020;49:1695–1705.
MLA Kazımoğlu, Sercan and Erhan Deniz. “Fekete-Szegö Problem for Generalized Bi-Subordinate Functions of Complex Order”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 5, 2020, pp. 1695-0, doi:10.15672/hujms.557072.
Vancouver Kazımoğlu S, Deniz E. Fekete-Szegö problem for generalized bi-subordinate functions of complex order. Hacettepe Journal of Mathematics and Statistics. 2020;49(5):1695-70.

Cited By