Research Article
BibTex RIS Cite
Year 2020, , 505 - 509, 02.04.2020
https://doi.org/10.15672/hujms.568323

Abstract

References

  • [1] M. Avdispahić, Prime geodesic theorem of Gallagher type, arXiv:1701.02115, 2017.
  • [2] M. Avdispahić, On Koyama’s refinement of the prime geodesic theorem, Proc. Japan Acad. Ser. A Math. Sci. 94 (3), 21–24, 2018.
  • [3] M. Avdispahić, Gallagherian $PGT$ on $PSL(2,Z)$, Funct. Approx. Comment. Math. 58 (2), 207–213, 2018.
  • [4] M. Avdispahić, Errata and addendum to "On the prime geodesic theorem for hyperbolic 3-manifolds" Math. Nachr. 291 (2018), no. 14-15, 2160–2167, Math. Nachr. 292 (4), 691–693, 2019.
  • [5] O. Balkanova and D. Frolenkov, Bounds for a spectral exponential sum, J. London Math. Soc. 99 (2), 249–272, 2019.
  • [6] R. Blumenhagen and E. Plauschinn, Introduction to conformal field theory: With applications to string theory, in: Lect. Notes Phys. 779, Springer, Berlin Heidelberg, 2009.
  • [7] P. Buser, Geometry and spectra of compact Riemann surfaces, Progress in Mathe- matics 106, Birkhäuser, Boston-Basel-Berlin, 1992.
  • [8] Y. Cai, Prime geodesic theorem, J. Théor. Nombres Bordeaux, 14 (1), 59–72, 2002.
  • [9] J.B. Conrey and H. Iwaniec, The cubic moment of central values of automorphic L-functions, Ann. of Math. (2) 151 (3), 1175–1216, 2000.
  • [10] P.X. Gallagher, A large sieve density estimate near $\sigma =1$, Invent. Math. 11, 329–339, 1970.
  • [11] P.X. Gallagher, Some consequences of the Riemann hypothesis, Acta Arith. 37, 339– 343, 1980.
  • [12] D.A. Hejhal, The Selberg trace formula for PSL(2,R). Vol I, Lecture Notes in Math- ematics 548, Springer, Berlin, 1976.
  • [13] A.E. Ingham, The distribution of prime numbers, Cambridge University Press, 1932.
  • [14] H. Iwaniec, Non-holomorphic modular forms and their applications, in: Modular forms (Durham, 1983), Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., 157– 196, Horwood, Chichester, 1984.
  • [15] H. Iwaniec, Prime geodesic theorem, J. Reine Angew. Math. 349, 136–159, 1984.
  • [16] S. Koyama, Refinement of prime geodesic theorem, Proc. Japan Acad. Ser A Math. Sci. 92 (7), 77–81, 2016.
  • [17] W. Luo and P. Sarnak, Quantum ergodicity of eigenfunctions on $PSL_{2}(Z)\backslash H^{2}$, Inst. Hautes Études Sci. Publ. Math. 81, 207–237, 1995.
  • [18] B. Randol, On the asymptotic distribution of closed geodesics on compact Riemann surfaces, Trans. Amer. Math. Soc. 233, 241–247, 1977.
  • [19] K. Soundararajan and M.P. Young, The prime geodesic theorem, J. Reine Angew. Math. 676, 105–120, 2013.

Prime geodesic theorem for the modular surface

Year 2020, , 505 - 509, 02.04.2020
https://doi.org/10.15672/hujms.568323

Abstract

Under the generalized Lindelöf hypothesis, the exponent in the error term of the prime geodesic theorem for the modular surface is reduced to $\frac{5}{8}+\varepsilon$ outside a set of finite logarithmic measure.

References

  • [1] M. Avdispahić, Prime geodesic theorem of Gallagher type, arXiv:1701.02115, 2017.
  • [2] M. Avdispahić, On Koyama’s refinement of the prime geodesic theorem, Proc. Japan Acad. Ser. A Math. Sci. 94 (3), 21–24, 2018.
  • [3] M. Avdispahić, Gallagherian $PGT$ on $PSL(2,Z)$, Funct. Approx. Comment. Math. 58 (2), 207–213, 2018.
  • [4] M. Avdispahić, Errata and addendum to "On the prime geodesic theorem for hyperbolic 3-manifolds" Math. Nachr. 291 (2018), no. 14-15, 2160–2167, Math. Nachr. 292 (4), 691–693, 2019.
  • [5] O. Balkanova and D. Frolenkov, Bounds for a spectral exponential sum, J. London Math. Soc. 99 (2), 249–272, 2019.
  • [6] R. Blumenhagen and E. Plauschinn, Introduction to conformal field theory: With applications to string theory, in: Lect. Notes Phys. 779, Springer, Berlin Heidelberg, 2009.
  • [7] P. Buser, Geometry and spectra of compact Riemann surfaces, Progress in Mathe- matics 106, Birkhäuser, Boston-Basel-Berlin, 1992.
  • [8] Y. Cai, Prime geodesic theorem, J. Théor. Nombres Bordeaux, 14 (1), 59–72, 2002.
  • [9] J.B. Conrey and H. Iwaniec, The cubic moment of central values of automorphic L-functions, Ann. of Math. (2) 151 (3), 1175–1216, 2000.
  • [10] P.X. Gallagher, A large sieve density estimate near $\sigma =1$, Invent. Math. 11, 329–339, 1970.
  • [11] P.X. Gallagher, Some consequences of the Riemann hypothesis, Acta Arith. 37, 339– 343, 1980.
  • [12] D.A. Hejhal, The Selberg trace formula for PSL(2,R). Vol I, Lecture Notes in Math- ematics 548, Springer, Berlin, 1976.
  • [13] A.E. Ingham, The distribution of prime numbers, Cambridge University Press, 1932.
  • [14] H. Iwaniec, Non-holomorphic modular forms and their applications, in: Modular forms (Durham, 1983), Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., 157– 196, Horwood, Chichester, 1984.
  • [15] H. Iwaniec, Prime geodesic theorem, J. Reine Angew. Math. 349, 136–159, 1984.
  • [16] S. Koyama, Refinement of prime geodesic theorem, Proc. Japan Acad. Ser A Math. Sci. 92 (7), 77–81, 2016.
  • [17] W. Luo and P. Sarnak, Quantum ergodicity of eigenfunctions on $PSL_{2}(Z)\backslash H^{2}$, Inst. Hautes Études Sci. Publ. Math. 81, 207–237, 1995.
  • [18] B. Randol, On the asymptotic distribution of closed geodesics on compact Riemann surfaces, Trans. Amer. Math. Soc. 233, 241–247, 1977.
  • [19] K. Soundararajan and M.P. Young, The prime geodesic theorem, J. Reine Angew. Math. 676, 105–120, 2013.
There are 19 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Muharem Avdispahić This is me 0000-0001-7836-4988

Publication Date April 2, 2020
Published in Issue Year 2020

Cite

APA Avdispahić, M. (2020). Prime geodesic theorem for the modular surface. Hacettepe Journal of Mathematics and Statistics, 49(2), 505-509. https://doi.org/10.15672/hujms.568323
AMA Avdispahić M. Prime geodesic theorem for the modular surface. Hacettepe Journal of Mathematics and Statistics. April 2020;49(2):505-509. doi:10.15672/hujms.568323
Chicago Avdispahić, Muharem. “Prime Geodesic Theorem for the Modular Surface”. Hacettepe Journal of Mathematics and Statistics 49, no. 2 (April 2020): 505-9. https://doi.org/10.15672/hujms.568323.
EndNote Avdispahić M (April 1, 2020) Prime geodesic theorem for the modular surface. Hacettepe Journal of Mathematics and Statistics 49 2 505–509.
IEEE M. Avdispahić, “Prime geodesic theorem for the modular surface”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 2, pp. 505–509, 2020, doi: 10.15672/hujms.568323.
ISNAD Avdispahić, Muharem. “Prime Geodesic Theorem for the Modular Surface”. Hacettepe Journal of Mathematics and Statistics 49/2 (April 2020), 505-509. https://doi.org/10.15672/hujms.568323.
JAMA Avdispahić M. Prime geodesic theorem for the modular surface. Hacettepe Journal of Mathematics and Statistics. 2020;49:505–509.
MLA Avdispahić, Muharem. “Prime Geodesic Theorem for the Modular Surface”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 2, 2020, pp. 505-9, doi:10.15672/hujms.568323.
Vancouver Avdispahić M. Prime geodesic theorem for the modular surface. Hacettepe Journal of Mathematics and Statistics. 2020;49(2):505-9.

Cited By


On von Koch Theorem for PSL(2,$$\mathbb {Z}$$)
Bulletin of the Malaysian Mathematical Sciences Society
https://doi.org/10.1007/s40840-020-01053-z