Research Article
BibTex RIS Cite

Actor of a crossed module of dialgebras via tetramultipliers

Year 2021, , 1063 - 1078, 06.08.2021
https://doi.org/10.15672/hujms.701217

Abstract

We study the representability of actions in the category of crossed modules of dialgebras via tetramultipliers. We deduce a pair of dialgebras in order to construct an object which, under certain circumstances, is the actor (also known as the split extension classifier). Moreover, we give give a full description of actions in terms of equations. Finally, we check that under the aforementioned circumstances, the center coincides with the kernel of the canonical map from a crossed module to its actor.

Supporting Institution

Ministerio de Economía y Competitividad

Project Number

MTM2016-79661-P

References

  • [1] J.C. Baez and A.S. Crans, Higher-dimensional algebra. VI. Lie 2-algebras, Theory Appl. Categ. 12, 492–538, 2004.
  • [2] F. Borceux, G. Janelidze and G.M. Kelly, On the representability of actions in a semi-abelian category, Theory Appl. Categ. 14, 244–286, 2005.
  • [3] Y. Boyaci, J. M. Casas, T. Datuashvili and E.Ö. Uslu, Actions in modified categories of interest with application to crossed modules, Theory Appl. Categ. 30, 882–908, 2015.
  • [4] R. Brown, Groupoids and crossed objects in algebraic topology, Homology Homotopy Appl. 1, 1–78, 1999.
  • [5] R. Brown and C.B. Spencer, G-groupoids, crossed modules and the fundamental groupoid of a topological group, Nederl. Akad. Wetensch. Proc. Ser. A. 79, 296–302, 1976.
  • [6] J.M. Casas, T. Datuashvili and M. Ladra, Universal strict general actors and actors in categories of interest, Appl. Categ. Structures 18 (1), 85–114, 2010.
  • [7] J.M. Casas, R. Fernández-Casado, X. García-Martínez and E. Khmaladze, Actor of a crossed module of Leibniz algebras, Theory Appl. Categ. 33, 23–42, 2018.
  • [8] J.M. Casas, R. Fernández-Casado, E. Khmaladze and M. Ladra, Universal enveloping crossed module of a Lie crossed module, Homology Homotopy Appl. 16 (2), 143–158, 2014.
  • [9] J.M. Casas, R. Fernández-Casado, E. Khmaladze and M. Ladra, More on crossed modules in Lie, Leibniz, associative and diassociative algebrs, J. Algebra Appl. 16 (6), 1750107 (17 pp.), 2017.
  • [10] J.M. Casas, N. Inassaridze, E. Khmaladze and M. Ladra, Adjunction between crossed modules of groups and algebras, J. Homotopy Relat. Struct. 9 (1), 223–237, 2014.
  • [11] Sh. Chen, Y. Sheng and Z. Zheng, Non-abelian extensions of Lie 2-algebras, Sci. China Math. 55 (8), 1655–1668, 2012.
  • [12] P. Dedecker and S.-T. Lue, A nonabelian two-dimensional cohomology for associative algebras, Bull. Amer. Math. Soc. 72 1044–1050, 1966.
  • [13] R. Fernández-Casado, Relations between crossed modules of different algebras, Ph.D. thesis, Universidade de Santiago de Compostela, 2015.
  • [14] X. García-Martínez and T. Van der Linden, A characterisation of Lie algebras amongst anti-commutative algebras, J. Pure Appl. Algebra 223(11), 4857–4870, 2019.
  • [15] X. García-Martínez and T. Van der Linden, A characterisation of Lie algebras via algebraic exponentiation, Adv. Math. 341, 92–117, 2019.
  • [16] X. García-Martínez, M. Tsishyn, T. Van der Linden and C. Vienne, Algebras with representable representations, To appear in Proc. Edinburgh Math. Soc., 2021.
  • [17] G. Hochschild, Cohomology and representations of associative algebras, Duke Math. J. 14, 921–948, 1947.
  • [18] S.A. Huq, Commutator, nilpotency, and solvability in categories, Quart. J. Math. Oxford Ser. (2), 19, 363–389, 1968.
  • [19] G. Janelidze, Internal crossed modules, Georgian Math. J. 10 (1), 99–114, 2003.
  • [20] C. Kassel and J.-L. Loday, Extensions centrales dalgèbres de Lie, Ann. Inst. Fourier (Grenoble), 32, 119–142, 1982.
  • [21] E. Khmaladze, On associative and Lie 2-algebras, Proc. A. Razmadze Math. Inst. 159, 57–64, 2012.
  • [22] J.-L. Loday, Dialgebras, Dialgebras and related operads, Lecture Notes in Math., vol. 1763, Springer, Berlin, 2001, pp. 7–66.
  • [23] J.-L. Loday and T. Pirashvili, Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann. 296(1), 139–158, 1993.
  • [24] S. Mac Lane, Extensions and obstructions for rings, Illinois J. Math. 2, 316–345, 1958.
  • [25] N. Martins-Ferreira, A. Montoli and M. Sobral, Semidirect products and crossed modules in monoids with operations, J. Pure Appl. Algebra, 217(2), 334–347, 2013.
  • [26] G. Orzech, Obstruction theory in algebraic categories. I, II, J. Pure Appl. Algebra, 2, 287–314, 1972; ibid. 2 1972, 315–340.
  • [27] A. Patchkoria, Crossed semimodules and Schreier internal categories in the category of monoids, Georgian Math. J. 5 (6), 575–581, 1998.
  • [28] T. Porter, Extensions, crossed modules and internal categories in categories of groups with operations, Proc. Edinburgh Math. Soc. (2) 30 (3), 373–381, 1987.
  • [29] N.M. Shammu, Algebraic and categorical structure of categories of crossed modules of algebras, Ph.D. thesis, University of Bangor, 1992.
  • [30] Y. Sheng and Z. Liu, Leibniz 2-algebras and twisted Courant algebroids, Comm. Algebra, 41 (5), 1929–1953, 2013.
  • [31] R. Tang and Y. Sheng, Cohomological characterizations of non-abelian extensions of strict Lie 2-algebras, J. Geom. Phys. 144, 294–307, 2019.
  • [32] E.Ö. Uslu, S. Çetin and A.F. Arslan, On crossed modules in modified categories of interest, Math. Commun. 22 (1), 103–119, 2017.
  • [33] J.H.C. Whitehead, Combinatorial homotopy II, Bull. Amer. Math. Soc. 55, 453–496, 1949.
Year 2021, , 1063 - 1078, 06.08.2021
https://doi.org/10.15672/hujms.701217

Abstract

Project Number

MTM2016-79661-P

References

  • [1] J.C. Baez and A.S. Crans, Higher-dimensional algebra. VI. Lie 2-algebras, Theory Appl. Categ. 12, 492–538, 2004.
  • [2] F. Borceux, G. Janelidze and G.M. Kelly, On the representability of actions in a semi-abelian category, Theory Appl. Categ. 14, 244–286, 2005.
  • [3] Y. Boyaci, J. M. Casas, T. Datuashvili and E.Ö. Uslu, Actions in modified categories of interest with application to crossed modules, Theory Appl. Categ. 30, 882–908, 2015.
  • [4] R. Brown, Groupoids and crossed objects in algebraic topology, Homology Homotopy Appl. 1, 1–78, 1999.
  • [5] R. Brown and C.B. Spencer, G-groupoids, crossed modules and the fundamental groupoid of a topological group, Nederl. Akad. Wetensch. Proc. Ser. A. 79, 296–302, 1976.
  • [6] J.M. Casas, T. Datuashvili and M. Ladra, Universal strict general actors and actors in categories of interest, Appl. Categ. Structures 18 (1), 85–114, 2010.
  • [7] J.M. Casas, R. Fernández-Casado, X. García-Martínez and E. Khmaladze, Actor of a crossed module of Leibniz algebras, Theory Appl. Categ. 33, 23–42, 2018.
  • [8] J.M. Casas, R. Fernández-Casado, E. Khmaladze and M. Ladra, Universal enveloping crossed module of a Lie crossed module, Homology Homotopy Appl. 16 (2), 143–158, 2014.
  • [9] J.M. Casas, R. Fernández-Casado, E. Khmaladze and M. Ladra, More on crossed modules in Lie, Leibniz, associative and diassociative algebrs, J. Algebra Appl. 16 (6), 1750107 (17 pp.), 2017.
  • [10] J.M. Casas, N. Inassaridze, E. Khmaladze and M. Ladra, Adjunction between crossed modules of groups and algebras, J. Homotopy Relat. Struct. 9 (1), 223–237, 2014.
  • [11] Sh. Chen, Y. Sheng and Z. Zheng, Non-abelian extensions of Lie 2-algebras, Sci. China Math. 55 (8), 1655–1668, 2012.
  • [12] P. Dedecker and S.-T. Lue, A nonabelian two-dimensional cohomology for associative algebras, Bull. Amer. Math. Soc. 72 1044–1050, 1966.
  • [13] R. Fernández-Casado, Relations between crossed modules of different algebras, Ph.D. thesis, Universidade de Santiago de Compostela, 2015.
  • [14] X. García-Martínez and T. Van der Linden, A characterisation of Lie algebras amongst anti-commutative algebras, J. Pure Appl. Algebra 223(11), 4857–4870, 2019.
  • [15] X. García-Martínez and T. Van der Linden, A characterisation of Lie algebras via algebraic exponentiation, Adv. Math. 341, 92–117, 2019.
  • [16] X. García-Martínez, M. Tsishyn, T. Van der Linden and C. Vienne, Algebras with representable representations, To appear in Proc. Edinburgh Math. Soc., 2021.
  • [17] G. Hochschild, Cohomology and representations of associative algebras, Duke Math. J. 14, 921–948, 1947.
  • [18] S.A. Huq, Commutator, nilpotency, and solvability in categories, Quart. J. Math. Oxford Ser. (2), 19, 363–389, 1968.
  • [19] G. Janelidze, Internal crossed modules, Georgian Math. J. 10 (1), 99–114, 2003.
  • [20] C. Kassel and J.-L. Loday, Extensions centrales dalgèbres de Lie, Ann. Inst. Fourier (Grenoble), 32, 119–142, 1982.
  • [21] E. Khmaladze, On associative and Lie 2-algebras, Proc. A. Razmadze Math. Inst. 159, 57–64, 2012.
  • [22] J.-L. Loday, Dialgebras, Dialgebras and related operads, Lecture Notes in Math., vol. 1763, Springer, Berlin, 2001, pp. 7–66.
  • [23] J.-L. Loday and T. Pirashvili, Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann. 296(1), 139–158, 1993.
  • [24] S. Mac Lane, Extensions and obstructions for rings, Illinois J. Math. 2, 316–345, 1958.
  • [25] N. Martins-Ferreira, A. Montoli and M. Sobral, Semidirect products and crossed modules in monoids with operations, J. Pure Appl. Algebra, 217(2), 334–347, 2013.
  • [26] G. Orzech, Obstruction theory in algebraic categories. I, II, J. Pure Appl. Algebra, 2, 287–314, 1972; ibid. 2 1972, 315–340.
  • [27] A. Patchkoria, Crossed semimodules and Schreier internal categories in the category of monoids, Georgian Math. J. 5 (6), 575–581, 1998.
  • [28] T. Porter, Extensions, crossed modules and internal categories in categories of groups with operations, Proc. Edinburgh Math. Soc. (2) 30 (3), 373–381, 1987.
  • [29] N.M. Shammu, Algebraic and categorical structure of categories of crossed modules of algebras, Ph.D. thesis, University of Bangor, 1992.
  • [30] Y. Sheng and Z. Liu, Leibniz 2-algebras and twisted Courant algebroids, Comm. Algebra, 41 (5), 1929–1953, 2013.
  • [31] R. Tang and Y. Sheng, Cohomological characterizations of non-abelian extensions of strict Lie 2-algebras, J. Geom. Phys. 144, 294–307, 2019.
  • [32] E.Ö. Uslu, S. Çetin and A.F. Arslan, On crossed modules in modified categories of interest, Math. Commun. 22 (1), 103–119, 2017.
  • [33] J.H.C. Whitehead, Combinatorial homotopy II, Bull. Amer. Math. Soc. 55, 453–496, 1949.
There are 33 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

José Manuel Casas This is me 0000-0002-6556-6131

Rafael Fernandez-casado 0000-0003-1347-6879

Xabier Garcia Martinez 0000-0003-1679-4047

Emzar Khmaladze This is me 0000-0001-9492-982X

Project Number MTM2016-79661-P
Publication Date August 6, 2021
Published in Issue Year 2021

Cite

APA Casas, J. M., Fernandez-casado, R., Garcia Martinez, X., Khmaladze, E. (2021). Actor of a crossed module of dialgebras via tetramultipliers. Hacettepe Journal of Mathematics and Statistics, 50(4), 1063-1078. https://doi.org/10.15672/hujms.701217
AMA Casas JM, Fernandez-casado R, Garcia Martinez X, Khmaladze E. Actor of a crossed module of dialgebras via tetramultipliers. Hacettepe Journal of Mathematics and Statistics. August 2021;50(4):1063-1078. doi:10.15672/hujms.701217
Chicago Casas, José Manuel, Rafael Fernandez-casado, Xabier Garcia Martinez, and Emzar Khmaladze. “Actor of a Crossed Module of Dialgebras via Tetramultipliers”. Hacettepe Journal of Mathematics and Statistics 50, no. 4 (August 2021): 1063-78. https://doi.org/10.15672/hujms.701217.
EndNote Casas JM, Fernandez-casado R, Garcia Martinez X, Khmaladze E (August 1, 2021) Actor of a crossed module of dialgebras via tetramultipliers. Hacettepe Journal of Mathematics and Statistics 50 4 1063–1078.
IEEE J. M. Casas, R. Fernandez-casado, X. Garcia Martinez, and E. Khmaladze, “Actor of a crossed module of dialgebras via tetramultipliers”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 4, pp. 1063–1078, 2021, doi: 10.15672/hujms.701217.
ISNAD Casas, José Manuel et al. “Actor of a Crossed Module of Dialgebras via Tetramultipliers”. Hacettepe Journal of Mathematics and Statistics 50/4 (August 2021), 1063-1078. https://doi.org/10.15672/hujms.701217.
JAMA Casas JM, Fernandez-casado R, Garcia Martinez X, Khmaladze E. Actor of a crossed module of dialgebras via tetramultipliers. Hacettepe Journal of Mathematics and Statistics. 2021;50:1063–1078.
MLA Casas, José Manuel et al. “Actor of a Crossed Module of Dialgebras via Tetramultipliers”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 4, 2021, pp. 1063-78, doi:10.15672/hujms.701217.
Vancouver Casas JM, Fernandez-casado R, Garcia Martinez X, Khmaladze E. Actor of a crossed module of dialgebras via tetramultipliers. Hacettepe Journal of Mathematics and Statistics. 2021;50(4):1063-78.