Research Article
BibTex RIS Cite
Year 2021, , 414 - 432, 11.04.2021
https://doi.org/10.15672/hujms.702703

Abstract

References

  • [1] A.S. Ahmad El-Faqeer, M.H. Mohd, V. Ravichandran and S. Supramaniam, Starlikeness of certain analytic functions, arXiv:2006.11734.
  • [2] R.M. Ali, N.K. Jain and V. Ravichandran, Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput. 218 (11), 6557– 6565, 2012.
  • [3] R.M. Ali, N.K. Jain and V. Ravichandran, On the radius constants for classes of analytic functions, Bull. Malays. Math. Sci. Soc. (2) 36 (1), 23–38, 2013.
  • [4] P.L. Bajpai and P. Singh, The radius of convexity of certain analytic functions in the unit disc, Indian J. Pure Appl. Math. 5 (8), 701–707, 1974.
  • [5] G.P. Bhargava and S.L. Shukla, The radius of univalence of certain regular functions, Proc. Nat. Acad. Sci. India Sect. A 54 (3), 251–254, 1984.
  • [6] W.M. Causey and E.P. Merkes, Radii of starlikeness of certain classes of analytic functions, J. Math. Anal. Appl. 31, 579–586, 1970.
  • [7] M.P. Chen, The radius of starlikeness of certain analytic functions, Bull. Inst. Math. Acad. Sinica 1 (2), 181–190, 1973.
  • [8] N.E. Cho, V. Kumar, S. Kumar and V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc. 45 (1), 213–232, 2019.
  • [9] S. Gandhi and V. Ravichandran, Starlike functions associated with a lune, Asian-Eur. J. Math. 10 (4), 1750064, 12 pp., 2017.
  • [10] R.M. Goel, On the radius of univalence and starlikeness for certain analytic functions, J. Math. Sci. 1, 98–102, 1966.
  • [11] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1, 169–185, 1952.
  • [12] K. Khatter, S.K. Lee and V. Ravichandran, Radius of starlikeness for classes of analytic functions, arXiv:2006.11744.
  • [13] B. Kowalczyk and A. Lecko, Radius problem in classes of polynomial close-to-convex functions I, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 63 (1), 65–77, 2013.
  • [14] B. Kowalczyk and A. Lecko, Radius problem in classes of polynomial close-to-convex functions II. Partial solutions, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 63 (2), 23–34, 2013.
  • [15] S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math. 40 (2), 199–212, 2016.
  • [16] A. Lecko, Some subclasses of close-to-convex functions, Ann. Polon. Math. 58 (1), 53–64, 1993.
  • [17] T.H. MacGregor, The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 14, 514–520, 1963.
  • [18] T.H. MacGregor, The radius of univalence of certain analytic functions. II, Proc Amer. Math. Soc. 14, 521–524, 1963.
  • [19] R. Mendiratta, S. Nagpal and V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc. 38 (1), 365–386, 2015.
  • [20] R.K. Raina and J. Sokół, Some properties related to a certain class of starlike functions, C. R. Math. Acad. Sci. Paris, 353 (11), 973–978, 2015.
  • [21] J.S. Ratti, The radius of univalence of certain analytic functions, Math. Z. 107, 241– 248, 1968.
  • [22] J.S. Ratti, The radius of convexity of certain analytic functions, Indian J. Pure Appl. Math. 1 (1), 30–36, 1970.
  • [23] M.O. Reade, On close-to-convex univalent functions, Michigan Math. J. 3 (1), 59–62, 1955.
  • [24] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1), 189–196, 1993.
  • [25] A. Sebastian and V. Ravichandran, Radius of starlikeness of certain analytic functions, Math. Slovaca, to appear.
  • [26] G.M. Shah, On the univalence of some analytic functions, Pacific J. Math. 43, 239– 250, 1972.
  • [27] T.N. Shanmugam and V. Ravichandran, Certain properties of uniformly convex functions, in: Computational Methods and Function Theory 1994 (Penang), 319–324, Ser. Approx. Decompos., 5, World Sci. Publ., River Edge, NJ, 1995.
  • [28] K. Sharma, N.K. Jain and V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat. 27 (5-6), 923–939, 2016.
  • [29] J. Sokół and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. 19, 101–105, 1996.

Starlikeness for certain close-to-star functions

Year 2021, , 414 - 432, 11.04.2021
https://doi.org/10.15672/hujms.702703

Abstract

We find the radius of starlikeness of order $\alpha$, $0\leq \alpha<1$, of normalized analytic functions $f$ on the unit disk satisfying either $Re(f(z)/g(z))>0$ or $\left|(f(z)/g(z))-1\right|<1$ for some close-to-star function $g$ with $Re(g(z)/(z+z^2/2))>0$ as well as of the class of close-to-star functions $f$ satisfying $Re(f(z)/(z+z^2/2))>0$. Several other radii such as radius of univalence and parabolic starlikeness are shown to be the same as the radius of starlikeness of appropriate order.

References

  • [1] A.S. Ahmad El-Faqeer, M.H. Mohd, V. Ravichandran and S. Supramaniam, Starlikeness of certain analytic functions, arXiv:2006.11734.
  • [2] R.M. Ali, N.K. Jain and V. Ravichandran, Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput. 218 (11), 6557– 6565, 2012.
  • [3] R.M. Ali, N.K. Jain and V. Ravichandran, On the radius constants for classes of analytic functions, Bull. Malays. Math. Sci. Soc. (2) 36 (1), 23–38, 2013.
  • [4] P.L. Bajpai and P. Singh, The radius of convexity of certain analytic functions in the unit disc, Indian J. Pure Appl. Math. 5 (8), 701–707, 1974.
  • [5] G.P. Bhargava and S.L. Shukla, The radius of univalence of certain regular functions, Proc. Nat. Acad. Sci. India Sect. A 54 (3), 251–254, 1984.
  • [6] W.M. Causey and E.P. Merkes, Radii of starlikeness of certain classes of analytic functions, J. Math. Anal. Appl. 31, 579–586, 1970.
  • [7] M.P. Chen, The radius of starlikeness of certain analytic functions, Bull. Inst. Math. Acad. Sinica 1 (2), 181–190, 1973.
  • [8] N.E. Cho, V. Kumar, S. Kumar and V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc. 45 (1), 213–232, 2019.
  • [9] S. Gandhi and V. Ravichandran, Starlike functions associated with a lune, Asian-Eur. J. Math. 10 (4), 1750064, 12 pp., 2017.
  • [10] R.M. Goel, On the radius of univalence and starlikeness for certain analytic functions, J. Math. Sci. 1, 98–102, 1966.
  • [11] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1, 169–185, 1952.
  • [12] K. Khatter, S.K. Lee and V. Ravichandran, Radius of starlikeness for classes of analytic functions, arXiv:2006.11744.
  • [13] B. Kowalczyk and A. Lecko, Radius problem in classes of polynomial close-to-convex functions I, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 63 (1), 65–77, 2013.
  • [14] B. Kowalczyk and A. Lecko, Radius problem in classes of polynomial close-to-convex functions II. Partial solutions, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 63 (2), 23–34, 2013.
  • [15] S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math. 40 (2), 199–212, 2016.
  • [16] A. Lecko, Some subclasses of close-to-convex functions, Ann. Polon. Math. 58 (1), 53–64, 1993.
  • [17] T.H. MacGregor, The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 14, 514–520, 1963.
  • [18] T.H. MacGregor, The radius of univalence of certain analytic functions. II, Proc Amer. Math. Soc. 14, 521–524, 1963.
  • [19] R. Mendiratta, S. Nagpal and V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc. 38 (1), 365–386, 2015.
  • [20] R.K. Raina and J. Sokół, Some properties related to a certain class of starlike functions, C. R. Math. Acad. Sci. Paris, 353 (11), 973–978, 2015.
  • [21] J.S. Ratti, The radius of univalence of certain analytic functions, Math. Z. 107, 241– 248, 1968.
  • [22] J.S. Ratti, The radius of convexity of certain analytic functions, Indian J. Pure Appl. Math. 1 (1), 30–36, 1970.
  • [23] M.O. Reade, On close-to-convex univalent functions, Michigan Math. J. 3 (1), 59–62, 1955.
  • [24] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1), 189–196, 1993.
  • [25] A. Sebastian and V. Ravichandran, Radius of starlikeness of certain analytic functions, Math. Slovaca, to appear.
  • [26] G.M. Shah, On the univalence of some analytic functions, Pacific J. Math. 43, 239– 250, 1972.
  • [27] T.N. Shanmugam and V. Ravichandran, Certain properties of uniformly convex functions, in: Computational Methods and Function Theory 1994 (Penang), 319–324, Ser. Approx. Decompos., 5, World Sci. Publ., River Edge, NJ, 1995.
  • [28] K. Sharma, N.K. Jain and V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat. 27 (5-6), 923–939, 2016.
  • [29] J. Sokół and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. 19, 101–105, 1996.
There are 29 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

R. Kanaga This is me 0000-0003-2055-9621

V Ravichandran 0000-0002-3632-7529

Publication Date April 11, 2021
Published in Issue Year 2021

Cite

APA Kanaga, R., & Ravichandran, V. (2021). Starlikeness for certain close-to-star functions. Hacettepe Journal of Mathematics and Statistics, 50(2), 414-432. https://doi.org/10.15672/hujms.702703
AMA Kanaga R, Ravichandran V. Starlikeness for certain close-to-star functions. Hacettepe Journal of Mathematics and Statistics. April 2021;50(2):414-432. doi:10.15672/hujms.702703
Chicago Kanaga, R., and V Ravichandran. “Starlikeness for Certain Close-to-Star Functions”. Hacettepe Journal of Mathematics and Statistics 50, no. 2 (April 2021): 414-32. https://doi.org/10.15672/hujms.702703.
EndNote Kanaga R, Ravichandran V (April 1, 2021) Starlikeness for certain close-to-star functions. Hacettepe Journal of Mathematics and Statistics 50 2 414–432.
IEEE R. Kanaga and V. Ravichandran, “Starlikeness for certain close-to-star functions”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 2, pp. 414–432, 2021, doi: 10.15672/hujms.702703.
ISNAD Kanaga, R. - Ravichandran, V. “Starlikeness for Certain Close-to-Star Functions”. Hacettepe Journal of Mathematics and Statistics 50/2 (April 2021), 414-432. https://doi.org/10.15672/hujms.702703.
JAMA Kanaga R, Ravichandran V. Starlikeness for certain close-to-star functions. Hacettepe Journal of Mathematics and Statistics. 2021;50:414–432.
MLA Kanaga, R. and V Ravichandran. “Starlikeness for Certain Close-to-Star Functions”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 2, 2021, pp. 414-32, doi:10.15672/hujms.702703.
Vancouver Kanaga R, Ravichandran V. Starlikeness for certain close-to-star functions. Hacettepe Journal of Mathematics and Statistics. 2021;50(2):414-32.