Research Article
BibTex RIS Cite
Year 2021, , 1347 - 1357, 15.10.2021
https://doi.org/10.15672/hujms.717867

Abstract

References

  • [1] B. Abdullaev and A. Sadullaev, Potential theory in the class of m-subharmonic functions, Proceedings of the Steklov Institute of Mathematics, 279, 155–180, 2012.
  • [2] E. Bedford and B.A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1-2), 1–40, 1982.
  • [3] B. Berndtsson, Superforms, supercurrents, minimal manifolds and Riemannian geometry, Arnold Math. J. 5 (4), 501-532, 2019.
  • [4] Z. Blocki, Weak solutions to the complex Hessian equation, Annales de l’Institut Fourier, 55 (5), 1735–1756, 2005.
  • [5] A. Colesanti and D. Hug, Steiner type formulae and weighted measures of singularities for semi-convex functions, Trans. Amer. Math. Soc. 352 (7), 3239-3263, 2000.
  • [6] A. Colesanti and D. Hug, Hessian measures of convex functions and applications to area measures, J. London Math. Soc. 71-1 (2), 221-235, 2005.
  • [7] A. Dhouib and F. Elkhadra, m-Potential theory associated to a positive closed current in the class of m-sh functions, Complex Var. Elliptic Equ. 61 (7), 875–901, 2016.
  • [8] F. Elkhadra and K. Zahmoul, Lelong-Jensen Formula, Demailly-Lelong Numbers and Weighted Degree of Positive Currents, arXiv:1809.00992[math CV].
  • [9] V. Guedj and A. Zeriahi, Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal. 15 (4), 607–639, 2005.
  • [10] A. Lagerberg, Supercurrents and tropical geometry, Math. Z. 270 (3-4), 1011–1050, 2012.
  • [11] H. Lu, Équations Hessiennes complexes, Thèse de l’Unniversité Toulouse III (UT3 Paul Sabatier), 2012.
  • [12] A. Rashkovskii, Indicators for plurisubharmonic functions of logarithmic growth, Indiana Univ. Math. J. 50 (3), 1433-1446, 2001.

m-Pluripotential theory on Riemannian spaces and tropical geometry

Year 2021, , 1347 - 1357, 15.10.2021
https://doi.org/10.15672/hujms.717867

Abstract

In this study we extend the concepts of $m$-pluripotential theory to the Riemannian superspace formalism. Since in this setting positive supercurrents and tropical varieties are closely related, we try to understand the relative capacity notion with respect to the intersection of tropical hypersurfaces. Moreover, we generalize the classical quasicontinuity result of Cartan to $m$-subharmonic functions of Riemannian spaces and lastly we introduce the indicators of $m$-subharmonic functions and give a geometric characterization of their Newton numbers.

References

  • [1] B. Abdullaev and A. Sadullaev, Potential theory in the class of m-subharmonic functions, Proceedings of the Steklov Institute of Mathematics, 279, 155–180, 2012.
  • [2] E. Bedford and B.A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1-2), 1–40, 1982.
  • [3] B. Berndtsson, Superforms, supercurrents, minimal manifolds and Riemannian geometry, Arnold Math. J. 5 (4), 501-532, 2019.
  • [4] Z. Blocki, Weak solutions to the complex Hessian equation, Annales de l’Institut Fourier, 55 (5), 1735–1756, 2005.
  • [5] A. Colesanti and D. Hug, Steiner type formulae and weighted measures of singularities for semi-convex functions, Trans. Amer. Math. Soc. 352 (7), 3239-3263, 2000.
  • [6] A. Colesanti and D. Hug, Hessian measures of convex functions and applications to area measures, J. London Math. Soc. 71-1 (2), 221-235, 2005.
  • [7] A. Dhouib and F. Elkhadra, m-Potential theory associated to a positive closed current in the class of m-sh functions, Complex Var. Elliptic Equ. 61 (7), 875–901, 2016.
  • [8] F. Elkhadra and K. Zahmoul, Lelong-Jensen Formula, Demailly-Lelong Numbers and Weighted Degree of Positive Currents, arXiv:1809.00992[math CV].
  • [9] V. Guedj and A. Zeriahi, Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal. 15 (4), 607–639, 2005.
  • [10] A. Lagerberg, Supercurrents and tropical geometry, Math. Z. 270 (3-4), 1011–1050, 2012.
  • [11] H. Lu, Équations Hessiennes complexes, Thèse de l’Unniversité Toulouse III (UT3 Paul Sabatier), 2012.
  • [12] A. Rashkovskii, Indicators for plurisubharmonic functions of logarithmic growth, Indiana Univ. Math. J. 50 (3), 1433-1446, 2001.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Sibel Sahin 0000-0001-9808-5169

Publication Date October 15, 2021
Published in Issue Year 2021

Cite

APA Sahin, S. (2021). m-Pluripotential theory on Riemannian spaces and tropical geometry. Hacettepe Journal of Mathematics and Statistics, 50(5), 1347-1357. https://doi.org/10.15672/hujms.717867
AMA Sahin S. m-Pluripotential theory on Riemannian spaces and tropical geometry. Hacettepe Journal of Mathematics and Statistics. October 2021;50(5):1347-1357. doi:10.15672/hujms.717867
Chicago Sahin, Sibel. “M-Pluripotential Theory on Riemannian Spaces and Tropical Geometry”. Hacettepe Journal of Mathematics and Statistics 50, no. 5 (October 2021): 1347-57. https://doi.org/10.15672/hujms.717867.
EndNote Sahin S (October 1, 2021) m-Pluripotential theory on Riemannian spaces and tropical geometry. Hacettepe Journal of Mathematics and Statistics 50 5 1347–1357.
IEEE S. Sahin, “m-Pluripotential theory on Riemannian spaces and tropical geometry”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 5, pp. 1347–1357, 2021, doi: 10.15672/hujms.717867.
ISNAD Sahin, Sibel. “M-Pluripotential Theory on Riemannian Spaces and Tropical Geometry”. Hacettepe Journal of Mathematics and Statistics 50/5 (October 2021), 1347-1357. https://doi.org/10.15672/hujms.717867.
JAMA Sahin S. m-Pluripotential theory on Riemannian spaces and tropical geometry. Hacettepe Journal of Mathematics and Statistics. 2021;50:1347–1357.
MLA Sahin, Sibel. “M-Pluripotential Theory on Riemannian Spaces and Tropical Geometry”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 5, 2021, pp. 1347-5, doi:10.15672/hujms.717867.
Vancouver Sahin S. m-Pluripotential theory on Riemannian spaces and tropical geometry. Hacettepe Journal of Mathematics and Statistics. 2021;50(5):1347-5.