Year 2021,
, 1268 - 1279, 15.10.2021
Zeynep Eken
,
Serap Kemali
,
Gültekin Tınaztepe
,
Gabil Adilov
References
- [1] G. Adilov and S. Kemali, Abstract convexity and Hermite-Hadamard type inequalities,
J. Inequal.Appl. 2009, Article ID 943534, 13 pages, 2009.
- [2] G. Adilov and I. Yesilce, $B^{-1}$-convex Sets and $B^{-1}$-measurable Maps., Numer. Func.
Anal. Opt. 33 (2), 131–141, 2012.
- [3] J.B. Jesús Bastero and A. Peña, The Theorems of Caratheodory and Gluskin for
$0<p<1$, Proc. Amer. Math. Soc. 123 (1), 141–144, 1995.
- [4] G. Birkhoff and M.K. Bennett, The convexity lattice of a poset, Order 2 (3), 223–242,
1985.
- [5] W. Briec and C. Horvath, Nash points, Ky Fan inequality and equilibria of abstract
economies in Max-Plus and B-convexity, J. Math. Anal. App. 341 (1), 188–199, 2008.
- [6] S.S. Dragomir, Inequalities of Hermite-Hadamard type for GG-convex functions, Indian
J. Math. 60 (1), 1–21, 2018.
- [7] S.S. Dragomir, Inequalities of Hermite-Hadamard type for GH-convex functions, Electron.
J. Math. Anal. Appl. 7 (2), 244–255, 2019.
- [8] S.S. Dragomir and B.T. Torebek, Some Hermite-Hadamard type inequalities in the
class of hyperbolic p-convex functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A
Mat. RACSAM 1130 (4), 3413–3423, 2019.
- [9] S.S. Dragomir and C. Pearce, Selected topics on Hermite-Hadamard inequalities and
applications, RGMIA Monographs, Victoria University, 2000.
- [10] S.S. Dragomir and S. Fitzpatrick, Hadamard’s inequality for s-convex functions in the
first sense and applications, Demonstr. Math. 31 (3), 633–642, 1998.
- [11] S.S. Dragomir and S. Fitzpatrick, The Hadamard inequalities for s-convex functions
in the second sense. Demonstr. Math. 32 (4), 687–696, 1999.
- [12] X.C. Huang and X.P. Zhou, Probabilistic assessment for slope using the generalized
Chebyshev inequalities, Int. J. Geomec. 20 (4), 06020003, 2020.
- [13] I. Kawai, Locally convex lattices, J. Math. Soc. Jpn. 9 (3), 281–314, 1957.
- [14] S. Kemali, G. Tinaztepe and G. Adilov, New Type Inequalities for $B^{-1}$-convex Functions
involving Hadamard Fractional Integral, Facta Univ-Ser. Math. Informat. 33
(5), 697–704, 2019.
- [15] S. Kemali, I. Yesilce and G. Adilov, $B$-Convexity, $B^{-1}$-Convexity, and Their Comparison,
Numer. Func. Anal. Opt. 36 (2), 133–146, 2015.
- [16] T. Migot and M. G. Cojocaru, A parametrized variational inequality approach to track
the solution set of a generalized nash equilibrium problem, Eur. J. Oper. Res. 283 (3),
1136–1147, 2020.
- [17] S. Nayak, The Hadamard determinant inequality-Extensions to operators on a Hilbert
space, J. Func. Analysis 274 (10), 2978–3002, 2018.
- [18] H. Ogasawara, The multivariate Markov and multiple Chebyshev inequalities, Commu.
Stat. Theory 49 2, 441–453, 2020.
- [19] S. Sezer, Z. Eken, G. Tnaztepe and G. Adilov, $p$-convex functions and
their some properties, Numer. Func. Anal. Opt. 42 (4), 443–459, 2021. DOI:
10.1080/01630563.2021.1884876.
- [20] W. Takahashi, A convexity in metric space and nonexpansive mappings. I., Kodai
Math. Sem. Rep. 22 (2), 142–149, 1970. DOI: 10.2996/kmj/1138846111
- [21] Y. User and K. Gulez, A new direct torque control algorithm for torque and flux ripple
reduction, Int. Rev. Elect. Eng. 8 (4), 644–653, 2013.
- [22] J. G. Wendel, Note on the gamma function, Amer. Math. Monthly 55 (9), 563–564,
1948.
- [23] I. Yesilce and G. Adilov, Hermite-Hadamard inequalities for $B$-convex and $B^{-1}$-
convex functions, Int. J. Nonlinear Anal. Appl. 8, 225–233, 2017.
- [24] I. Yesilce and G. Adilov, Hermite-Hadamard type inequalities for $B^{-1}$-convex functions
involving generalized fractional integral operators, Filomat 32 (18), 6457–6464,
2018.
- [25] I. Yesilce and G. Adilov, Hermite-Hadamard Inequalities for L (j)-convex Functions
and S (j)-convex Functions, Malaya J. Mat. 3 (3), 346–359, 2015.
- [26] A.M. Zaki, A.M. El-Nagar, M. El-Bardini and F.A.S. Soliman, Deep learning controller
for nonlinear system based on Lyapunov stability criterion, Neural Comput.
Appl. 33, 1515–1531, 2021.
The Hermite-Hadamard inequalities for $p$-convex functions
Year 2021,
, 1268 - 1279, 15.10.2021
Zeynep Eken
,
Serap Kemali
,
Gültekin Tınaztepe
,
Gabil Adilov
Abstract
In this paper, the Hermite-Hadamard inequality for $p-$convex function is provided. Some integral inequalities for them are also presented. Also, based on the integral and double integral of $p-$convex sets, the new functions are defined and under certain conditions, $p-$convexity of these functions are shown. Some inequalities for these functions are expressed.
References
- [1] G. Adilov and S. Kemali, Abstract convexity and Hermite-Hadamard type inequalities,
J. Inequal.Appl. 2009, Article ID 943534, 13 pages, 2009.
- [2] G. Adilov and I. Yesilce, $B^{-1}$-convex Sets and $B^{-1}$-measurable Maps., Numer. Func.
Anal. Opt. 33 (2), 131–141, 2012.
- [3] J.B. Jesús Bastero and A. Peña, The Theorems of Caratheodory and Gluskin for
$0<p<1$, Proc. Amer. Math. Soc. 123 (1), 141–144, 1995.
- [4] G. Birkhoff and M.K. Bennett, The convexity lattice of a poset, Order 2 (3), 223–242,
1985.
- [5] W. Briec and C. Horvath, Nash points, Ky Fan inequality and equilibria of abstract
economies in Max-Plus and B-convexity, J. Math. Anal. App. 341 (1), 188–199, 2008.
- [6] S.S. Dragomir, Inequalities of Hermite-Hadamard type for GG-convex functions, Indian
J. Math. 60 (1), 1–21, 2018.
- [7] S.S. Dragomir, Inequalities of Hermite-Hadamard type for GH-convex functions, Electron.
J. Math. Anal. Appl. 7 (2), 244–255, 2019.
- [8] S.S. Dragomir and B.T. Torebek, Some Hermite-Hadamard type inequalities in the
class of hyperbolic p-convex functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A
Mat. RACSAM 1130 (4), 3413–3423, 2019.
- [9] S.S. Dragomir and C. Pearce, Selected topics on Hermite-Hadamard inequalities and
applications, RGMIA Monographs, Victoria University, 2000.
- [10] S.S. Dragomir and S. Fitzpatrick, Hadamard’s inequality for s-convex functions in the
first sense and applications, Demonstr. Math. 31 (3), 633–642, 1998.
- [11] S.S. Dragomir and S. Fitzpatrick, The Hadamard inequalities for s-convex functions
in the second sense. Demonstr. Math. 32 (4), 687–696, 1999.
- [12] X.C. Huang and X.P. Zhou, Probabilistic assessment for slope using the generalized
Chebyshev inequalities, Int. J. Geomec. 20 (4), 06020003, 2020.
- [13] I. Kawai, Locally convex lattices, J. Math. Soc. Jpn. 9 (3), 281–314, 1957.
- [14] S. Kemali, G. Tinaztepe and G. Adilov, New Type Inequalities for $B^{-1}$-convex Functions
involving Hadamard Fractional Integral, Facta Univ-Ser. Math. Informat. 33
(5), 697–704, 2019.
- [15] S. Kemali, I. Yesilce and G. Adilov, $B$-Convexity, $B^{-1}$-Convexity, and Their Comparison,
Numer. Func. Anal. Opt. 36 (2), 133–146, 2015.
- [16] T. Migot and M. G. Cojocaru, A parametrized variational inequality approach to track
the solution set of a generalized nash equilibrium problem, Eur. J. Oper. Res. 283 (3),
1136–1147, 2020.
- [17] S. Nayak, The Hadamard determinant inequality-Extensions to operators on a Hilbert
space, J. Func. Analysis 274 (10), 2978–3002, 2018.
- [18] H. Ogasawara, The multivariate Markov and multiple Chebyshev inequalities, Commu.
Stat. Theory 49 2, 441–453, 2020.
- [19] S. Sezer, Z. Eken, G. Tnaztepe and G. Adilov, $p$-convex functions and
their some properties, Numer. Func. Anal. Opt. 42 (4), 443–459, 2021. DOI:
10.1080/01630563.2021.1884876.
- [20] W. Takahashi, A convexity in metric space and nonexpansive mappings. I., Kodai
Math. Sem. Rep. 22 (2), 142–149, 1970. DOI: 10.2996/kmj/1138846111
- [21] Y. User and K. Gulez, A new direct torque control algorithm for torque and flux ripple
reduction, Int. Rev. Elect. Eng. 8 (4), 644–653, 2013.
- [22] J. G. Wendel, Note on the gamma function, Amer. Math. Monthly 55 (9), 563–564,
1948.
- [23] I. Yesilce and G. Adilov, Hermite-Hadamard inequalities for $B$-convex and $B^{-1}$-
convex functions, Int. J. Nonlinear Anal. Appl. 8, 225–233, 2017.
- [24] I. Yesilce and G. Adilov, Hermite-Hadamard type inequalities for $B^{-1}$-convex functions
involving generalized fractional integral operators, Filomat 32 (18), 6457–6464,
2018.
- [25] I. Yesilce and G. Adilov, Hermite-Hadamard Inequalities for L (j)-convex Functions
and S (j)-convex Functions, Malaya J. Mat. 3 (3), 346–359, 2015.
- [26] A.M. Zaki, A.M. El-Nagar, M. El-Bardini and F.A.S. Soliman, Deep learning controller
for nonlinear system based on Lyapunov stability criterion, Neural Comput.
Appl. 33, 1515–1531, 2021.