Research Article
BibTex RIS Cite

Recurrent sets and shadowing for finitely generated semigroup actions on metric spaces

Year 2021, , 934 - 948, 06.08.2021
https://doi.org/10.15672/hujms.784081

Abstract

We introduce various new type of recurrent sets for finitely generated semigroups on non-compact metric spaces that are conjugacy invariant, and obtain some basic properties of chain recurrent sets for semigroups via these new definitions. Moreover, we define the notion of weak shadowing property for finitely generated group actions on compact metric spaces, which is weaker than that of shadowing property, and prove the equivalence of the shadowing and weak shadowing properties for the finitely generated group actions on a generalized homogeneous space without isolated points.

Supporting Institution

National Natural Science Foundation of China

Project Number

11601449

References

  • [1] S.A. Ahmadi, X. Wu, and G. Chen, Topological chain and shadowing properties of dynamical systems on uniform spaces, Topology Appl. 275, 107153, 2020.
  • [2] J. Ahn, K. Lee, and S. Lee, Persistent actions on compact metric spaces, J. Chungcheong Math. Soc. 30 (1), 61–66, 2017.
  • [3] D.V. Anosov, On a certain class of invariant sets of smooth dynamical systems, Proc. 5th Int. Conf. on Non-Linear Oscillations, 2, 39–45, 1970.
  • [4] A. Artigue, Lipschitz perturbations of expansive systems, Discrete Contin. Dyn. Syst. 35 (5), 1829–1841, 2015.
  • [5] A.Z. Bahabadi, Shadowing and average shadowing properties for iterated function systems, Georgian Math. J. 22 (2) 179–184, 2015.
  • [6] R. Bowen, Equilibrium states and ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, 470, Springer-Verlag, Berlin-New York, 1975.
  • [7] M. Carvakho, F.B. Rodrigues, and P. Varandas, A variational principle for free semigroup actions, Adv. Math. 334, 450–487, 2018.
  • [8] S.K. Choi, C. Chu, and K. Lee, Recurrence in persistent dynamical systems, Bull. Aust. Math. Soc. 43 (3), 509–517, 1991.
  • [9] N. Chung and K. Lee, Topological stability and pseudo orbit tracing property of group actions, Proc. Amer. Math. Soc. 146 (3), 1047–1057, 2018.
  • [10] Z. Ding, J. Yin, and X. Luo, The multi-transitivity of free semigroup actions, Stoch. Dyn. 20 (5), 2050040, 2020.
  • [11] A. Fakhari and F.H. Ghane, On shadowing: ordinary and ergodic, J. Math. Anal. Appl. 364 (1), 151–155, 2010.
  • [12] Y. Ju, D. Ma and Y. Wang, Topological entropy of free semigroup actions for noncompact sets, Discrete Contin. Dyn. Syst. 39 (2), 995–1017, 2019.
  • [13] K. Lee, N. Nguyen, and Y. Yang, Topological stability and spectral decomposition for homeomorphisms on noncompact spaces, Discrete Contin. Dyn. Syst. 38 (5), 2487– 2503, 2018.
  • [14] J. Lewowics, Persistence in expansive systems, Ergodic Theory Dynam. Systems, 3 (4), 567-578, 1983.
  • [15] Y. Liang and C. Zhao, Rates of recurrence for free semigroup actions, J. Dyn. Control Syst. 27, 417–425, 2021.
  • [16] M. Mazure, Weak shadowing for discrete dynamical systems on nonsmooth manifolds, J. Math. Anal. Appl. 281 (2), 657–662, 2003.
  • [17] P. Oprocha and X.Wu, On averaged tracing of periodic average pseudo orbits, Discrete Contin. Dyn. Syst. 37 (9), 4943–4957, 2017.
  • [18] A.V. Osipov and S.B. Tikhomirov, Shadowing for actions of some finitely generated groups, Dyn. Syst. 29 (3), 337–351, 2014.
  • [19] S.Y. Pilyugin, A.A. Rodionova, and K. Sakai, Orbital and weak shadowing properties, Discrete Contin. Dyn. Syst. 9 (2), 287–308, 2003.
  • [20] K. Sakai, Diffeomorphisms with the average-shadowing property on two-dimensional closed manifolds, Rocky Mountain J. Math. 30 (3), 1129–1137, 2000.
  • [21] Z. Shabani, Ergodic shadowing of semigroup actions, Bull. Iranian Math. Soc. 46 (2), 303–321, 2020.
  • [22] X. Wu, Chaos of transformations induced onto the space of probability measures, Internat. J. Bifur. Chaos 26 (13), 1650227, 2016.
  • [23] X. Wu, S. Liang, Y. Luo, M. Xin, and X. Zhang, A remark on the limit shadowing property for iterated function systems, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 81 (3), 107–114, 2019.
  • [24] X.Wu, X. Ma, Z. Zhu, and T. Lu, Topological ergodic shadowing and chaos on uniform spaces, Internat. J. Bifur. Chaos 28 (3), 1850043, 2018.
  • [25] X. Wu, P. Oprocha, and G. Chen, On various definitions of shadowing with average error in tracing, Nonlinearity, 29 (7), 1942–1972, 2016.
  • [26] X. Wu, L. Wang, and J. Liang, The chain properties and average shadowing property of iterated function systems, Qual. Theory Dyn. Syst. 17 (1), 219–227, 2018.
  • [27] X. Wu, X. Zhang, and X. Ma, Various shadowing in linear dynamical systems, Internat. J. Bifur. Chaos 29 (3), 1950042, 2019.
  • [28] X. Wu, X. Zhang, and F. Sun, Volume-preserving diffeomorphisms with the $\mathscr{M}_0$- shadowing properties, Mediterr. J. Math. 18, 45, 2021.
  • [29] X. Zhang and X. Wu, Diffeomorphisms with the $\mathscr{M}_0$-shadowing property, Acta Math. Sin. (Engl. Ser.) 35 (11), 1760–1770, 2019.
  • [30] X. Zhang, X. Wu, Y. Luo, and X. Ma, A remark on limit shadowing for hyperbolic iterated function systems, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 81 (3), 139–146, 2019.
Year 2021, , 934 - 948, 06.08.2021
https://doi.org/10.15672/hujms.784081

Abstract

Project Number

11601449

References

  • [1] S.A. Ahmadi, X. Wu, and G. Chen, Topological chain and shadowing properties of dynamical systems on uniform spaces, Topology Appl. 275, 107153, 2020.
  • [2] J. Ahn, K. Lee, and S. Lee, Persistent actions on compact metric spaces, J. Chungcheong Math. Soc. 30 (1), 61–66, 2017.
  • [3] D.V. Anosov, On a certain class of invariant sets of smooth dynamical systems, Proc. 5th Int. Conf. on Non-Linear Oscillations, 2, 39–45, 1970.
  • [4] A. Artigue, Lipschitz perturbations of expansive systems, Discrete Contin. Dyn. Syst. 35 (5), 1829–1841, 2015.
  • [5] A.Z. Bahabadi, Shadowing and average shadowing properties for iterated function systems, Georgian Math. J. 22 (2) 179–184, 2015.
  • [6] R. Bowen, Equilibrium states and ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, 470, Springer-Verlag, Berlin-New York, 1975.
  • [7] M. Carvakho, F.B. Rodrigues, and P. Varandas, A variational principle for free semigroup actions, Adv. Math. 334, 450–487, 2018.
  • [8] S.K. Choi, C. Chu, and K. Lee, Recurrence in persistent dynamical systems, Bull. Aust. Math. Soc. 43 (3), 509–517, 1991.
  • [9] N. Chung and K. Lee, Topological stability and pseudo orbit tracing property of group actions, Proc. Amer. Math. Soc. 146 (3), 1047–1057, 2018.
  • [10] Z. Ding, J. Yin, and X. Luo, The multi-transitivity of free semigroup actions, Stoch. Dyn. 20 (5), 2050040, 2020.
  • [11] A. Fakhari and F.H. Ghane, On shadowing: ordinary and ergodic, J. Math. Anal. Appl. 364 (1), 151–155, 2010.
  • [12] Y. Ju, D. Ma and Y. Wang, Topological entropy of free semigroup actions for noncompact sets, Discrete Contin. Dyn. Syst. 39 (2), 995–1017, 2019.
  • [13] K. Lee, N. Nguyen, and Y. Yang, Topological stability and spectral decomposition for homeomorphisms on noncompact spaces, Discrete Contin. Dyn. Syst. 38 (5), 2487– 2503, 2018.
  • [14] J. Lewowics, Persistence in expansive systems, Ergodic Theory Dynam. Systems, 3 (4), 567-578, 1983.
  • [15] Y. Liang and C. Zhao, Rates of recurrence for free semigroup actions, J. Dyn. Control Syst. 27, 417–425, 2021.
  • [16] M. Mazure, Weak shadowing for discrete dynamical systems on nonsmooth manifolds, J. Math. Anal. Appl. 281 (2), 657–662, 2003.
  • [17] P. Oprocha and X.Wu, On averaged tracing of periodic average pseudo orbits, Discrete Contin. Dyn. Syst. 37 (9), 4943–4957, 2017.
  • [18] A.V. Osipov and S.B. Tikhomirov, Shadowing for actions of some finitely generated groups, Dyn. Syst. 29 (3), 337–351, 2014.
  • [19] S.Y. Pilyugin, A.A. Rodionova, and K. Sakai, Orbital and weak shadowing properties, Discrete Contin. Dyn. Syst. 9 (2), 287–308, 2003.
  • [20] K. Sakai, Diffeomorphisms with the average-shadowing property on two-dimensional closed manifolds, Rocky Mountain J. Math. 30 (3), 1129–1137, 2000.
  • [21] Z. Shabani, Ergodic shadowing of semigroup actions, Bull. Iranian Math. Soc. 46 (2), 303–321, 2020.
  • [22] X. Wu, Chaos of transformations induced onto the space of probability measures, Internat. J. Bifur. Chaos 26 (13), 1650227, 2016.
  • [23] X. Wu, S. Liang, Y. Luo, M. Xin, and X. Zhang, A remark on the limit shadowing property for iterated function systems, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 81 (3), 107–114, 2019.
  • [24] X.Wu, X. Ma, Z. Zhu, and T. Lu, Topological ergodic shadowing and chaos on uniform spaces, Internat. J. Bifur. Chaos 28 (3), 1850043, 2018.
  • [25] X. Wu, P. Oprocha, and G. Chen, On various definitions of shadowing with average error in tracing, Nonlinearity, 29 (7), 1942–1972, 2016.
  • [26] X. Wu, L. Wang, and J. Liang, The chain properties and average shadowing property of iterated function systems, Qual. Theory Dyn. Syst. 17 (1), 219–227, 2018.
  • [27] X. Wu, X. Zhang, and X. Ma, Various shadowing in linear dynamical systems, Internat. J. Bifur. Chaos 29 (3), 1950042, 2019.
  • [28] X. Wu, X. Zhang, and F. Sun, Volume-preserving diffeomorphisms with the $\mathscr{M}_0$- shadowing properties, Mediterr. J. Math. 18, 45, 2021.
  • [29] X. Zhang and X. Wu, Diffeomorphisms with the $\mathscr{M}_0$-shadowing property, Acta Math. Sin. (Engl. Ser.) 35 (11), 1760–1770, 2019.
  • [30] X. Zhang, X. Wu, Y. Luo, and X. Ma, A remark on limit shadowing for hyperbolic iterated function systems, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 81 (3), 139–146, 2019.
There are 30 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Zahra Shabani This is me 0000-0002-7828-431X

Ali Barzanouni This is me 0000-0002-3192-6864

Xinxing Wu 0000-0002-2716-1416

Project Number 11601449
Publication Date August 6, 2021
Published in Issue Year 2021

Cite

APA Shabani, Z., Barzanouni, A., & Wu, X. (2021). Recurrent sets and shadowing for finitely generated semigroup actions on metric spaces. Hacettepe Journal of Mathematics and Statistics, 50(4), 934-948. https://doi.org/10.15672/hujms.784081
AMA Shabani Z, Barzanouni A, Wu X. Recurrent sets and shadowing for finitely generated semigroup actions on metric spaces. Hacettepe Journal of Mathematics and Statistics. August 2021;50(4):934-948. doi:10.15672/hujms.784081
Chicago Shabani, Zahra, Ali Barzanouni, and Xinxing Wu. “Recurrent Sets and Shadowing for Finitely Generated Semigroup Actions on Metric Spaces”. Hacettepe Journal of Mathematics and Statistics 50, no. 4 (August 2021): 934-48. https://doi.org/10.15672/hujms.784081.
EndNote Shabani Z, Barzanouni A, Wu X (August 1, 2021) Recurrent sets and shadowing for finitely generated semigroup actions on metric spaces. Hacettepe Journal of Mathematics and Statistics 50 4 934–948.
IEEE Z. Shabani, A. Barzanouni, and X. Wu, “Recurrent sets and shadowing for finitely generated semigroup actions on metric spaces”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 4, pp. 934–948, 2021, doi: 10.15672/hujms.784081.
ISNAD Shabani, Zahra et al. “Recurrent Sets and Shadowing for Finitely Generated Semigroup Actions on Metric Spaces”. Hacettepe Journal of Mathematics and Statistics 50/4 (August 2021), 934-948. https://doi.org/10.15672/hujms.784081.
JAMA Shabani Z, Barzanouni A, Wu X. Recurrent sets and shadowing for finitely generated semigroup actions on metric spaces. Hacettepe Journal of Mathematics and Statistics. 2021;50:934–948.
MLA Shabani, Zahra et al. “Recurrent Sets and Shadowing for Finitely Generated Semigroup Actions on Metric Spaces”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 4, 2021, pp. 934-48, doi:10.15672/hujms.784081.
Vancouver Shabani Z, Barzanouni A, Wu X. Recurrent sets and shadowing for finitely generated semigroup actions on metric spaces. Hacettepe Journal of Mathematics and Statistics. 2021;50(4):934-48.