Recurrent sets and shadowing for finitely generated semigroup actions on metric spaces
Year 2021,
, 934 - 948, 06.08.2021
Zahra Shabani
Ali Barzanouni
Xinxing Wu
Abstract
We introduce various new type of recurrent sets for finitely generated semigroups on non-compact metric spaces that are conjugacy invariant, and obtain some basic properties of chain recurrent sets for semigroups via these new definitions. Moreover, we define the notion of weak shadowing property for finitely generated group actions on compact metric spaces, which is weaker than that of shadowing property, and prove the equivalence of the shadowing and weak shadowing properties for the finitely generated group actions on a generalized homogeneous space without isolated points.
Supporting Institution
National Natural Science Foundation of China
References
- [1] S.A. Ahmadi, X. Wu, and G. Chen, Topological chain and shadowing properties of
dynamical systems on uniform spaces, Topology Appl. 275, 107153, 2020.
- [2] J. Ahn, K. Lee, and S. Lee, Persistent actions on compact metric spaces, J.
Chungcheong Math. Soc. 30 (1), 61–66, 2017.
- [3] D.V. Anosov, On a certain class of invariant sets of smooth dynamical systems, Proc.
5th Int. Conf. on Non-Linear Oscillations, 2, 39–45, 1970.
- [4] A. Artigue, Lipschitz perturbations of expansive systems, Discrete Contin. Dyn. Syst.
35 (5), 1829–1841, 2015.
- [5] A.Z. Bahabadi, Shadowing and average shadowing properties for iterated function
systems, Georgian Math. J. 22 (2) 179–184, 2015.
- [6] R. Bowen, Equilibrium states and ergodic theory of Anosov diffeomorphisms, Lecture
Notes in Mathematics, 470, Springer-Verlag, Berlin-New York, 1975.
- [7] M. Carvakho, F.B. Rodrigues, and P. Varandas, A variational principle for free semigroup
actions, Adv. Math. 334, 450–487, 2018.
- [8] S.K. Choi, C. Chu, and K. Lee, Recurrence in persistent dynamical systems, Bull.
Aust. Math. Soc. 43 (3), 509–517, 1991.
- [9] N. Chung and K. Lee, Topological stability and pseudo orbit tracing property of group
actions, Proc. Amer. Math. Soc. 146 (3), 1047–1057, 2018.
- [10] Z. Ding, J. Yin, and X. Luo, The multi-transitivity of free semigroup actions, Stoch.
Dyn. 20 (5), 2050040, 2020.
- [11] A. Fakhari and F.H. Ghane, On shadowing: ordinary and ergodic, J. Math. Anal.
Appl. 364 (1), 151–155, 2010.
- [12] Y. Ju, D. Ma and Y. Wang, Topological entropy of free semigroup actions for noncompact
sets, Discrete Contin. Dyn. Syst. 39 (2), 995–1017, 2019.
- [13] K. Lee, N. Nguyen, and Y. Yang, Topological stability and spectral decomposition for
homeomorphisms on noncompact spaces, Discrete Contin. Dyn. Syst. 38 (5), 2487–
2503, 2018.
- [14] J. Lewowics, Persistence in expansive systems, Ergodic Theory Dynam. Systems, 3
(4), 567-578, 1983.
- [15] Y. Liang and C. Zhao, Rates of recurrence for free semigroup actions, J. Dyn. Control
Syst. 27, 417–425, 2021.
- [16] M. Mazure, Weak shadowing for discrete dynamical systems on nonsmooth manifolds,
J. Math. Anal. Appl. 281 (2), 657–662, 2003.
- [17] P. Oprocha and X.Wu, On averaged tracing of periodic average pseudo orbits, Discrete
Contin. Dyn. Syst. 37 (9), 4943–4957, 2017.
- [18] A.V. Osipov and S.B. Tikhomirov, Shadowing for actions of some finitely generated
groups, Dyn. Syst. 29 (3), 337–351, 2014.
- [19] S.Y. Pilyugin, A.A. Rodionova, and K. Sakai, Orbital and weak shadowing properties,
Discrete Contin. Dyn. Syst. 9 (2), 287–308, 2003.
- [20] K. Sakai, Diffeomorphisms with the average-shadowing property on two-dimensional
closed manifolds, Rocky Mountain J. Math. 30 (3), 1129–1137, 2000.
- [21] Z. Shabani, Ergodic shadowing of semigroup actions, Bull. Iranian Math. Soc. 46 (2),
303–321, 2020.
- [22] X. Wu, Chaos of transformations induced onto the space of probability measures,
Internat. J. Bifur. Chaos 26 (13), 1650227, 2016.
- [23] X. Wu, S. Liang, Y. Luo, M. Xin, and X. Zhang, A remark on the limit shadowing
property for iterated function systems, Politehn. Univ. Bucharest Sci. Bull. Ser. A
Appl. Math. Phys. 81 (3), 107–114, 2019.
- [24] X.Wu, X. Ma, Z. Zhu, and T. Lu, Topological ergodic shadowing and chaos on uniform
spaces, Internat. J. Bifur. Chaos 28 (3), 1850043, 2018.
- [25] X. Wu, P. Oprocha, and G. Chen, On various definitions of shadowing with average
error in tracing, Nonlinearity, 29 (7), 1942–1972, 2016.
- [26] X. Wu, L. Wang, and J. Liang, The chain properties and average shadowing property
of iterated function systems, Qual. Theory Dyn. Syst. 17 (1), 219–227, 2018.
- [27] X. Wu, X. Zhang, and X. Ma, Various shadowing in linear dynamical systems, Internat.
J. Bifur. Chaos 29 (3), 1950042, 2019.
- [28] X. Wu, X. Zhang, and F. Sun, Volume-preserving diffeomorphisms with the $\mathscr{M}_0$-
shadowing properties, Mediterr. J. Math. 18, 45, 2021.
- [29] X. Zhang and X. Wu, Diffeomorphisms with the $\mathscr{M}_0$-shadowing property, Acta Math.
Sin. (Engl. Ser.) 35 (11), 1760–1770, 2019.
- [30] X. Zhang, X. Wu, Y. Luo, and X. Ma, A remark on limit shadowing for hyperbolic
iterated function systems, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math.
Phys. 81 (3), 139–146, 2019.
Year 2021,
, 934 - 948, 06.08.2021
Zahra Shabani
Ali Barzanouni
Xinxing Wu
References
- [1] S.A. Ahmadi, X. Wu, and G. Chen, Topological chain and shadowing properties of
dynamical systems on uniform spaces, Topology Appl. 275, 107153, 2020.
- [2] J. Ahn, K. Lee, and S. Lee, Persistent actions on compact metric spaces, J.
Chungcheong Math. Soc. 30 (1), 61–66, 2017.
- [3] D.V. Anosov, On a certain class of invariant sets of smooth dynamical systems, Proc.
5th Int. Conf. on Non-Linear Oscillations, 2, 39–45, 1970.
- [4] A. Artigue, Lipschitz perturbations of expansive systems, Discrete Contin. Dyn. Syst.
35 (5), 1829–1841, 2015.
- [5] A.Z. Bahabadi, Shadowing and average shadowing properties for iterated function
systems, Georgian Math. J. 22 (2) 179–184, 2015.
- [6] R. Bowen, Equilibrium states and ergodic theory of Anosov diffeomorphisms, Lecture
Notes in Mathematics, 470, Springer-Verlag, Berlin-New York, 1975.
- [7] M. Carvakho, F.B. Rodrigues, and P. Varandas, A variational principle for free semigroup
actions, Adv. Math. 334, 450–487, 2018.
- [8] S.K. Choi, C. Chu, and K. Lee, Recurrence in persistent dynamical systems, Bull.
Aust. Math. Soc. 43 (3), 509–517, 1991.
- [9] N. Chung and K. Lee, Topological stability and pseudo orbit tracing property of group
actions, Proc. Amer. Math. Soc. 146 (3), 1047–1057, 2018.
- [10] Z. Ding, J. Yin, and X. Luo, The multi-transitivity of free semigroup actions, Stoch.
Dyn. 20 (5), 2050040, 2020.
- [11] A. Fakhari and F.H. Ghane, On shadowing: ordinary and ergodic, J. Math. Anal.
Appl. 364 (1), 151–155, 2010.
- [12] Y. Ju, D. Ma and Y. Wang, Topological entropy of free semigroup actions for noncompact
sets, Discrete Contin. Dyn. Syst. 39 (2), 995–1017, 2019.
- [13] K. Lee, N. Nguyen, and Y. Yang, Topological stability and spectral decomposition for
homeomorphisms on noncompact spaces, Discrete Contin. Dyn. Syst. 38 (5), 2487–
2503, 2018.
- [14] J. Lewowics, Persistence in expansive systems, Ergodic Theory Dynam. Systems, 3
(4), 567-578, 1983.
- [15] Y. Liang and C. Zhao, Rates of recurrence for free semigroup actions, J. Dyn. Control
Syst. 27, 417–425, 2021.
- [16] M. Mazure, Weak shadowing for discrete dynamical systems on nonsmooth manifolds,
J. Math. Anal. Appl. 281 (2), 657–662, 2003.
- [17] P. Oprocha and X.Wu, On averaged tracing of periodic average pseudo orbits, Discrete
Contin. Dyn. Syst. 37 (9), 4943–4957, 2017.
- [18] A.V. Osipov and S.B. Tikhomirov, Shadowing for actions of some finitely generated
groups, Dyn. Syst. 29 (3), 337–351, 2014.
- [19] S.Y. Pilyugin, A.A. Rodionova, and K. Sakai, Orbital and weak shadowing properties,
Discrete Contin. Dyn. Syst. 9 (2), 287–308, 2003.
- [20] K. Sakai, Diffeomorphisms with the average-shadowing property on two-dimensional
closed manifolds, Rocky Mountain J. Math. 30 (3), 1129–1137, 2000.
- [21] Z. Shabani, Ergodic shadowing of semigroup actions, Bull. Iranian Math. Soc. 46 (2),
303–321, 2020.
- [22] X. Wu, Chaos of transformations induced onto the space of probability measures,
Internat. J. Bifur. Chaos 26 (13), 1650227, 2016.
- [23] X. Wu, S. Liang, Y. Luo, M. Xin, and X. Zhang, A remark on the limit shadowing
property for iterated function systems, Politehn. Univ. Bucharest Sci. Bull. Ser. A
Appl. Math. Phys. 81 (3), 107–114, 2019.
- [24] X.Wu, X. Ma, Z. Zhu, and T. Lu, Topological ergodic shadowing and chaos on uniform
spaces, Internat. J. Bifur. Chaos 28 (3), 1850043, 2018.
- [25] X. Wu, P. Oprocha, and G. Chen, On various definitions of shadowing with average
error in tracing, Nonlinearity, 29 (7), 1942–1972, 2016.
- [26] X. Wu, L. Wang, and J. Liang, The chain properties and average shadowing property
of iterated function systems, Qual. Theory Dyn. Syst. 17 (1), 219–227, 2018.
- [27] X. Wu, X. Zhang, and X. Ma, Various shadowing in linear dynamical systems, Internat.
J. Bifur. Chaos 29 (3), 1950042, 2019.
- [28] X. Wu, X. Zhang, and F. Sun, Volume-preserving diffeomorphisms with the $\mathscr{M}_0$-
shadowing properties, Mediterr. J. Math. 18, 45, 2021.
- [29] X. Zhang and X. Wu, Diffeomorphisms with the $\mathscr{M}_0$-shadowing property, Acta Math.
Sin. (Engl. Ser.) 35 (11), 1760–1770, 2019.
- [30] X. Zhang, X. Wu, Y. Luo, and X. Ma, A remark on limit shadowing for hyperbolic
iterated function systems, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math.
Phys. 81 (3), 139–146, 2019.