Research Article
BibTex RIS Cite
Year 2021, , 918 - 933, 06.08.2021
https://doi.org/10.15672/hujms.816059

Abstract

References

  • [1] Z. Ayati and J. Biazar, On the convergence of the homotopy perturbation method, J. Egyptian Math. Soc. 23 (2), 424–428, 2015.
  • [2] P.K. Bansal and N.D. Kaushika, Salt gradient stabilized solar pond collector, Energy Convers. Manag. 21, 81–95, 1981.
  • [3] R.S. Beniwal and R. Singh, Calculation of thermal efficiency of salt-gradient solar ponds, Heat Recov. Syst. CHP, 7 (6), 497–516, 1987.
  • [4] T.L. Bergman, F.P. Incropera and R. Viskanta. A multi-layer model for mixing layer development in a double diffusive thermohaline system heated from below, Int. J. Heat Mass Transf. 25, 1411–1418, 1982.
  • [5] F. Bernad, S. Casas, O. Gibert, A. Akbarzadeh, J.L. Cortina and C. Valderrama, Salinity gradient solar pond: Validation and simulation model, Sol. Energy 98, 366– 374, 2013.
  • [6] R. Boudhiaf, A.B. Moussa and M. Baccar, A two-dimensional numerical study of hydrodynamic, heat and mass transfer and stability in a salt gradient solar pond, Energies 5 (12), 3986-4007, 2012.
  • [7] G. Boyle, Renewable Energy: Power for a Sustainable Future, 2nd ed., Oxford, UK: Oxford University Press, 2004.
  • [8] M.M. Dah, Etude numerique et experimentale de la stabilité des etangs solaires a gradient de sel, PhD. Thesis, University of Tunisia El Manar, 2010.
  • [9] A. Defant, Physical Oceanography, Pergamon Press, Oxford, UK, 1961.
  • [10] D. Gonzalez, J. Amigo, S. Lorente, A. Bejan and F.Suarez, Constructal design of salt gradient solar pond fields, Int. J. Energy Res. 10, 1428–1446, 2016.
  • [11] A. Guesmia and N. Daili, Finite volume approximation of stationary Burgers equation, J. Anal. Appl. 6 (3), 179–193, 2008.
  • [12] A. Guesmia and N. Daili, Approche numérique de la solution entropique de l’équation d’évolution de Bürgers par la méthode des lignes, Gen. Math. Sci. 17 (2), 99–111, 2009.
  • [13] A. Guesmia and N. Daili, Numerical approximation of fractional Burgers equation, Commun. Math. Appl. 1 (3), 1–16, 2010.
  • [14] J.R. Hull, C.E. Nielsen and P. Golding, Salinity-gradient solar ponds, CRC Press, Boca Raton, FL, 1989.
  • [15] P.D. Lax and R.D. Richtmyer, Survey of the stability of linear finite difference equations, Comm. Pure Appl. Math. 9, 267–293, 1956.
  • [16] M.M. Ould Dah, M.Ouni, A. Guizani and A. Belghith, The influence of the heat extraction mode on the performance and stability of a mini solar pond, Appl. Energy 87, 3005–3010, 2010.
  • [17] A. Rabl and C.E. Nielson, Solar ponds for space heating, Sol. Energy 17, 1-12, 1975.
  • [18] K.R. Sreenivas, J.H. Arakeri and J. Srinivasan, Modeling of the dynamics of the mixed layer in solar ponds, Sol. Energy 54 (3), 193–202, 1995.
  • [19] M. Turkyilmazoglu, An effective approach for approximate analytical solutions of the damped Duffing equation, Phys. Scr. 86, 015301, 2012.
  • [20] M. Turkyilmazoglu, Is homotopy perturbation method the traditional Taylor series expansion, Hacet. J. Math. Stat. 44 (3), 651–657, 2015.
  • [21] M. Turkyilmazoglu, Convergence accelerating in the homotopy analysis method: a new approach, Adv. Appl. Math. Mech. 10 (4), 925–947, 2018.
  • [22] M. Turkyilmazoglu, A simple algorithm for high order Newton iteration formulae and some new variants, Hacet. J. Math. Stat. 49 (1), 425–438, 2020.
  • [23] Y.F. Wang and A.A. Akbarzadeh, A parametric study on solar ponds, Sol. Energy 30, 555–562, 1983.
  • [24] H. Wang, M. Xie and W. Sun, Nonlinear dynamic behavior of non-convective zone in salt gradient solar pond, Sol. Energy 85, 1745–1757, 2011.
  • [25] H. Xu, Laboratory studies on dynamical process in salinity gradient solar pond, Ph.D. Thesis, Ohio State University, 1990.
  • [26] F. Zangrando and H.J.S. Femando, A predictive model for migration of doublediffusive interfaces, Sol. Energy 113, 59–65, 1991.

Numerical modelling of study the effect of the entrainment velocity, the number of Nusselt and the thickness of the non-convective zone on the stability of the pond solar

Year 2021, , 918 - 933, 06.08.2021
https://doi.org/10.15672/hujms.816059

Abstract

In this paper, the effect of the entrainment velocity, the Nusselt number, and the thickness of the salinity gradient zone $(NCZ)$ on the stability of the solar pond are studied. The modelling equations of thermal energy and mass transfer in a salt gradient solar pond are discretized by finite difference methods in the transient regime. A new border condition applicable near the equilibrium of interface between the $(NCZ)$ and the $(LCZ)$ region is proposed. We take account of the effects of both turbulent entrainment and diffusion on the growth or erosion of the gradient zone $(NCZ)$. The obtained numerical results show an additional condition of solar pond's stability which links between the salinity gradient $\left( \Delta C\right) \ $ and the temperature gradient $\left( \Delta T\right)$ in the $(NCZ)$ region.

References

  • [1] Z. Ayati and J. Biazar, On the convergence of the homotopy perturbation method, J. Egyptian Math. Soc. 23 (2), 424–428, 2015.
  • [2] P.K. Bansal and N.D. Kaushika, Salt gradient stabilized solar pond collector, Energy Convers. Manag. 21, 81–95, 1981.
  • [3] R.S. Beniwal and R. Singh, Calculation of thermal efficiency of salt-gradient solar ponds, Heat Recov. Syst. CHP, 7 (6), 497–516, 1987.
  • [4] T.L. Bergman, F.P. Incropera and R. Viskanta. A multi-layer model for mixing layer development in a double diffusive thermohaline system heated from below, Int. J. Heat Mass Transf. 25, 1411–1418, 1982.
  • [5] F. Bernad, S. Casas, O. Gibert, A. Akbarzadeh, J.L. Cortina and C. Valderrama, Salinity gradient solar pond: Validation and simulation model, Sol. Energy 98, 366– 374, 2013.
  • [6] R. Boudhiaf, A.B. Moussa and M. Baccar, A two-dimensional numerical study of hydrodynamic, heat and mass transfer and stability in a salt gradient solar pond, Energies 5 (12), 3986-4007, 2012.
  • [7] G. Boyle, Renewable Energy: Power for a Sustainable Future, 2nd ed., Oxford, UK: Oxford University Press, 2004.
  • [8] M.M. Dah, Etude numerique et experimentale de la stabilité des etangs solaires a gradient de sel, PhD. Thesis, University of Tunisia El Manar, 2010.
  • [9] A. Defant, Physical Oceanography, Pergamon Press, Oxford, UK, 1961.
  • [10] D. Gonzalez, J. Amigo, S. Lorente, A. Bejan and F.Suarez, Constructal design of salt gradient solar pond fields, Int. J. Energy Res. 10, 1428–1446, 2016.
  • [11] A. Guesmia and N. Daili, Finite volume approximation of stationary Burgers equation, J. Anal. Appl. 6 (3), 179–193, 2008.
  • [12] A. Guesmia and N. Daili, Approche numérique de la solution entropique de l’équation d’évolution de Bürgers par la méthode des lignes, Gen. Math. Sci. 17 (2), 99–111, 2009.
  • [13] A. Guesmia and N. Daili, Numerical approximation of fractional Burgers equation, Commun. Math. Appl. 1 (3), 1–16, 2010.
  • [14] J.R. Hull, C.E. Nielsen and P. Golding, Salinity-gradient solar ponds, CRC Press, Boca Raton, FL, 1989.
  • [15] P.D. Lax and R.D. Richtmyer, Survey of the stability of linear finite difference equations, Comm. Pure Appl. Math. 9, 267–293, 1956.
  • [16] M.M. Ould Dah, M.Ouni, A. Guizani and A. Belghith, The influence of the heat extraction mode on the performance and stability of a mini solar pond, Appl. Energy 87, 3005–3010, 2010.
  • [17] A. Rabl and C.E. Nielson, Solar ponds for space heating, Sol. Energy 17, 1-12, 1975.
  • [18] K.R. Sreenivas, J.H. Arakeri and J. Srinivasan, Modeling of the dynamics of the mixed layer in solar ponds, Sol. Energy 54 (3), 193–202, 1995.
  • [19] M. Turkyilmazoglu, An effective approach for approximate analytical solutions of the damped Duffing equation, Phys. Scr. 86, 015301, 2012.
  • [20] M. Turkyilmazoglu, Is homotopy perturbation method the traditional Taylor series expansion, Hacet. J. Math. Stat. 44 (3), 651–657, 2015.
  • [21] M. Turkyilmazoglu, Convergence accelerating in the homotopy analysis method: a new approach, Adv. Appl. Math. Mech. 10 (4), 925–947, 2018.
  • [22] M. Turkyilmazoglu, A simple algorithm for high order Newton iteration formulae and some new variants, Hacet. J. Math. Stat. 49 (1), 425–438, 2020.
  • [23] Y.F. Wang and A.A. Akbarzadeh, A parametric study on solar ponds, Sol. Energy 30, 555–562, 1983.
  • [24] H. Wang, M. Xie and W. Sun, Nonlinear dynamic behavior of non-convective zone in salt gradient solar pond, Sol. Energy 85, 1745–1757, 2011.
  • [25] H. Xu, Laboratory studies on dynamical process in salinity gradient solar pond, Ph.D. Thesis, Ohio State University, 1990.
  • [26] F. Zangrando and H.J.S. Femando, A predictive model for migration of doublediffusive interfaces, Sol. Energy 113, 59–65, 1991.
There are 26 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Sabrina Gheraibia 0000-0001-5132-4652

Amar Guesmıa This is me 0000-0001-6824-2805

Publication Date August 6, 2021
Published in Issue Year 2021

Cite

APA Gheraibia, S., & Guesmıa, A. (2021). Numerical modelling of study the effect of the entrainment velocity, the number of Nusselt and the thickness of the non-convective zone on the stability of the pond solar. Hacettepe Journal of Mathematics and Statistics, 50(4), 918-933. https://doi.org/10.15672/hujms.816059
AMA Gheraibia S, Guesmıa A. Numerical modelling of study the effect of the entrainment velocity, the number of Nusselt and the thickness of the non-convective zone on the stability of the pond solar. Hacettepe Journal of Mathematics and Statistics. August 2021;50(4):918-933. doi:10.15672/hujms.816059
Chicago Gheraibia, Sabrina, and Amar Guesmıa. “Numerical Modelling of Study the Effect of the Entrainment Velocity, the Number of Nusselt and the Thickness of the Non-Convective Zone on the Stability of the Pond Solar”. Hacettepe Journal of Mathematics and Statistics 50, no. 4 (August 2021): 918-33. https://doi.org/10.15672/hujms.816059.
EndNote Gheraibia S, Guesmıa A (August 1, 2021) Numerical modelling of study the effect of the entrainment velocity, the number of Nusselt and the thickness of the non-convective zone on the stability of the pond solar. Hacettepe Journal of Mathematics and Statistics 50 4 918–933.
IEEE S. Gheraibia and A. Guesmıa, “Numerical modelling of study the effect of the entrainment velocity, the number of Nusselt and the thickness of the non-convective zone on the stability of the pond solar”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 4, pp. 918–933, 2021, doi: 10.15672/hujms.816059.
ISNAD Gheraibia, Sabrina - Guesmıa, Amar. “Numerical Modelling of Study the Effect of the Entrainment Velocity, the Number of Nusselt and the Thickness of the Non-Convective Zone on the Stability of the Pond Solar”. Hacettepe Journal of Mathematics and Statistics 50/4 (August 2021), 918-933. https://doi.org/10.15672/hujms.816059.
JAMA Gheraibia S, Guesmıa A. Numerical modelling of study the effect of the entrainment velocity, the number of Nusselt and the thickness of the non-convective zone on the stability of the pond solar. Hacettepe Journal of Mathematics and Statistics. 2021;50:918–933.
MLA Gheraibia, Sabrina and Amar Guesmıa. “Numerical Modelling of Study the Effect of the Entrainment Velocity, the Number of Nusselt and the Thickness of the Non-Convective Zone on the Stability of the Pond Solar”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 4, 2021, pp. 918-33, doi:10.15672/hujms.816059.
Vancouver Gheraibia S, Guesmıa A. Numerical modelling of study the effect of the entrainment velocity, the number of Nusselt and the thickness of the non-convective zone on the stability of the pond solar. Hacettepe Journal of Mathematics and Statistics. 2021;50(4):918-33.