Research Article
BibTex RIS Cite

Commutative graded-$n$-coherent and graded valuation rings

Year 2022, , 1047 - 1057, 01.08.2022
https://doi.org/10.15672/hujms.947574

Abstract

Let $R= \oplus_{ \alpha \in G} R_{\alpha}$ be a commutative ring with unity graded by an arbitrary grading commutative monoid $G$. For each positive integer, the notions of a graded-n-coherent module and a graded-n-coherent ring are introduced. In this paper many results are generalized from $n$-coherent rings to graded-$n$-coherent rings. In the last section, we provide necessary and sufficient conditions for the graded trivial extension ring to be a graded-valuation ring.

References

  • [1] D.D. Anderson, D.F. Anderson and G.W. Chang, Graded-valuation domains, Comm. Algebra 45 (9), 4018-4029, 2017.
  • [2] C. Bakkari, N. Mahdou and A. Riffi, Commutative graded-coherent rings, Indian J. Math. 61, 421-440, 2019
  • [3] C. Bakkari, N. Mahdou and A. Riffi, Uniformly graded-coherent rings, Quaestiones Mathematicae, 44 (10), 1371-1391, 2021.
  • [4] M. Bataineh and R. Abu-Dawwas, On graded 2-prime ideals, Mathematics, 9 (5), 493 (10 pages), 2021.
  • [5] N. Bourbaki, Algèbre Commutative Chapitres 1-4, Masson, Paris, 1985.
  • [6] N. Bourbaki, Algèbre, Chapitres 1-3, Springer-Verlag, Berlin, 2007.
  • [7] G.W. Chang and D.Y. Oh, Discrete valuation overrings of a graded Noetherian domain, J. Commut. Algebra, 10 (1), 45-61, 2018.
  • [8] D.L. Costa, Parameterizing families of non-Noetherian rings, Comm. Algebra, 22 (10), 3997-4011, 1994.
  • [9] D. Dobbs, S.E. Kabbaj and N. Mahdou, n-Coherent rings and modules, Lecture Notes in Pure and Applied Mathematics, 269-282, 1996.
  • [10] R. Gilmer, Commutative Semigroup Rings, Chicago, IL: University of Chicago Press, 1984.
  • [11] S. Glaz, Commutative Coherent Rings, Lecture notes in mathematics 1371, Springer- Verlag, Berlin, 1989.
  • [12] C. Nastasescu and F. Van Oystaeyen, Graded Ring Theory, North-Holland Math. Library, Amsterdam, 1982.
  • [13] C. Nastasescu and F. Van Oystaeyen, Methods of Graded Rings, Lecture Notes in Math. 1836, Springer-Verlag, Berlin, 2004.
  • [14] D.E. Rush, Noetherian properties in monoid rings, J. Pure Appl. Algebra, 185 (13), 259-278, 2003.
  • [15] W.V. Vasconcelos, The rings of Dimension two. Marcel Dekker, New York, 1976.
Year 2022, , 1047 - 1057, 01.08.2022
https://doi.org/10.15672/hujms.947574

Abstract

References

  • [1] D.D. Anderson, D.F. Anderson and G.W. Chang, Graded-valuation domains, Comm. Algebra 45 (9), 4018-4029, 2017.
  • [2] C. Bakkari, N. Mahdou and A. Riffi, Commutative graded-coherent rings, Indian J. Math. 61, 421-440, 2019
  • [3] C. Bakkari, N. Mahdou and A. Riffi, Uniformly graded-coherent rings, Quaestiones Mathematicae, 44 (10), 1371-1391, 2021.
  • [4] M. Bataineh and R. Abu-Dawwas, On graded 2-prime ideals, Mathematics, 9 (5), 493 (10 pages), 2021.
  • [5] N. Bourbaki, Algèbre Commutative Chapitres 1-4, Masson, Paris, 1985.
  • [6] N. Bourbaki, Algèbre, Chapitres 1-3, Springer-Verlag, Berlin, 2007.
  • [7] G.W. Chang and D.Y. Oh, Discrete valuation overrings of a graded Noetherian domain, J. Commut. Algebra, 10 (1), 45-61, 2018.
  • [8] D.L. Costa, Parameterizing families of non-Noetherian rings, Comm. Algebra, 22 (10), 3997-4011, 1994.
  • [9] D. Dobbs, S.E. Kabbaj and N. Mahdou, n-Coherent rings and modules, Lecture Notes in Pure and Applied Mathematics, 269-282, 1996.
  • [10] R. Gilmer, Commutative Semigroup Rings, Chicago, IL: University of Chicago Press, 1984.
  • [11] S. Glaz, Commutative Coherent Rings, Lecture notes in mathematics 1371, Springer- Verlag, Berlin, 1989.
  • [12] C. Nastasescu and F. Van Oystaeyen, Graded Ring Theory, North-Holland Math. Library, Amsterdam, 1982.
  • [13] C. Nastasescu and F. Van Oystaeyen, Methods of Graded Rings, Lecture Notes in Math. 1836, Springer-Verlag, Berlin, 2004.
  • [14] D.E. Rush, Noetherian properties in monoid rings, J. Pure Appl. Algebra, 185 (13), 259-278, 2003.
  • [15] W.V. Vasconcelos, The rings of Dimension two. Marcel Dekker, New York, 1976.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Anass Assarrar 0000-0002-8877-9287

Najib Mahdou 0000-0001-6353-1114

Ünsal Tekir 0000-0003-0739-1449

Suat Koç 0000-0003-1622-786X

Publication Date August 1, 2022
Published in Issue Year 2022

Cite

APA Assarrar, A., Mahdou, N., Tekir, Ü., Koç, S. (2022). Commutative graded-$n$-coherent and graded valuation rings. Hacettepe Journal of Mathematics and Statistics, 51(4), 1047-1057. https://doi.org/10.15672/hujms.947574
AMA Assarrar A, Mahdou N, Tekir Ü, Koç S. Commutative graded-$n$-coherent and graded valuation rings. Hacettepe Journal of Mathematics and Statistics. August 2022;51(4):1047-1057. doi:10.15672/hujms.947574
Chicago Assarrar, Anass, Najib Mahdou, Ünsal Tekir, and Suat Koç. “Commutative Graded-$n$-Coherent and Graded Valuation Rings”. Hacettepe Journal of Mathematics and Statistics 51, no. 4 (August 2022): 1047-57. https://doi.org/10.15672/hujms.947574.
EndNote Assarrar A, Mahdou N, Tekir Ü, Koç S (August 1, 2022) Commutative graded-$n$-coherent and graded valuation rings. Hacettepe Journal of Mathematics and Statistics 51 4 1047–1057.
IEEE A. Assarrar, N. Mahdou, Ü. Tekir, and S. Koç, “Commutative graded-$n$-coherent and graded valuation rings”, Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 4, pp. 1047–1057, 2022, doi: 10.15672/hujms.947574.
ISNAD Assarrar, Anass et al. “Commutative Graded-$n$-Coherent and Graded Valuation Rings”. Hacettepe Journal of Mathematics and Statistics 51/4 (August 2022), 1047-1057. https://doi.org/10.15672/hujms.947574.
JAMA Assarrar A, Mahdou N, Tekir Ü, Koç S. Commutative graded-$n$-coherent and graded valuation rings. Hacettepe Journal of Mathematics and Statistics. 2022;51:1047–1057.
MLA Assarrar, Anass et al. “Commutative Graded-$n$-Coherent and Graded Valuation Rings”. Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 4, 2022, pp. 1047-5, doi:10.15672/hujms.947574.
Vancouver Assarrar A, Mahdou N, Tekir Ü, Koç S. Commutative graded-$n$-coherent and graded valuation rings. Hacettepe Journal of Mathematics and Statistics. 2022;51(4):1047-5.