Research Article
BibTex RIS Cite
Year 2018, Volume: 47 Issue: 3, 649 - 658, 01.06.2018

Abstract

References

  • Bouzebda, S. and Cher, M. Test of symmetry based on copula function, Journal of Statistical Planning and Inference 142, 1262-1271, 2012.
  • Darsow, W. F. and Olsen, E. T. Norms for copulas, International Journal of Mathematics and Mathematical Sciences 18, 417-436, 1995.
  • Dehgani, A. Dolati, A., and Úbeda-Flores, M. Measures of radial asymmetry for bivariate random vectors, Statistical Papers 54, 271-286, 2013.
  • Denuit, M., Purcaru, O. and Van Keilegom, I. Bivariate Archimedean copula modelling for loss-ALAE data in non-life insurance, Working paper, UCL, 2004.
  • Durante, F. and Mesiar, R. L1-measure of non-exchangeability for bivariate extreme value and Archimax copulas, Journal of Mathematical Analysis and Applications 369, 610-615, 2010.
  • Fermanian, J. D. and Scaillet, O. Nonparametric estimation of copulas for time series, Journal of Risk 5, 25-54, 2003.
  • Fermanian, J. D., Radulovic, D. and Wegkamp, M. Weak convergence of empirical copula processes, Bernoulli 10 (5), 847860, 2004.
  • Frees, E. and Valdez, E. Understanding relationships using copulas, North American Actuarial Journal 2, 1-25, 1998.
  • Klugman, S. and Parsa, R. Fitting bivariate loss distributions with copulas, Insurance: Mathematics and Economics 24, 139-148, 1999.
  • Genest, C. and Neslehova, J. G. On tests of radial symmetry for bivariatecopulas, Statistical Papers 55, 1107-1119, 2014.
  • ojasiewicz, S. Introduction to the Theory of Real Functions, Wiley, Chichester, 1988.
  • Nelsen, R.B. Some concepts of bivariate symmetry, Journal of Nonparametric Statistics 3, 95-101, 1993.
  • Nelsen, R.B. An Introduction to Copulas. Second Edition, Springer, New York, 2006.
  • Nelsen, R.B. Extremes of nonexchangeability, Statistical Papers 48, 329-336, 2007.
  • Rosco, J. F. and Joe, H. Measures of tail asymmetry for bivariate copulas, Statistical Papers 4, 709-726, 2013.
  • Segers, J. Asymptotics of empirical copula processes under non-restrictive smoothness as- sumptions, Bernoulli 18, 764-782, 2012.
  • Siburg, K.F. and Stoimenov, P. A. A scalar product for copulas, Journal of Mathematical Analysis and Applications 344(1), 429-439, 2008.
  • Siburg, K. F. and Stoimenov, P. A. Symmetry of functions and exchangeability of random variables, Statical Papers 52, 1-15, 2011.
  • Sklar, A. Functions de répartition a n dimensions et leurs marges, Publ. Inst. Statistique Univ. Paris 8, 229-231, 1959.

A measure of radial asymmetry for bivariate copulas based on Sobolev norm

Year 2018, Volume: 47 Issue: 3, 649 - 658, 01.06.2018

Abstract

The modified Sobolev norm is used to construct an index for measuring the degree of radial asymmetry of a copula. We study various aspects of this index and discuss its rank-based estimator. Through simulation and a real data example, we compare the proposed index with the other radial asymmetry measures.

References

  • Bouzebda, S. and Cher, M. Test of symmetry based on copula function, Journal of Statistical Planning and Inference 142, 1262-1271, 2012.
  • Darsow, W. F. and Olsen, E. T. Norms for copulas, International Journal of Mathematics and Mathematical Sciences 18, 417-436, 1995.
  • Dehgani, A. Dolati, A., and Úbeda-Flores, M. Measures of radial asymmetry for bivariate random vectors, Statistical Papers 54, 271-286, 2013.
  • Denuit, M., Purcaru, O. and Van Keilegom, I. Bivariate Archimedean copula modelling for loss-ALAE data in non-life insurance, Working paper, UCL, 2004.
  • Durante, F. and Mesiar, R. L1-measure of non-exchangeability for bivariate extreme value and Archimax copulas, Journal of Mathematical Analysis and Applications 369, 610-615, 2010.
  • Fermanian, J. D. and Scaillet, O. Nonparametric estimation of copulas for time series, Journal of Risk 5, 25-54, 2003.
  • Fermanian, J. D., Radulovic, D. and Wegkamp, M. Weak convergence of empirical copula processes, Bernoulli 10 (5), 847860, 2004.
  • Frees, E. and Valdez, E. Understanding relationships using copulas, North American Actuarial Journal 2, 1-25, 1998.
  • Klugman, S. and Parsa, R. Fitting bivariate loss distributions with copulas, Insurance: Mathematics and Economics 24, 139-148, 1999.
  • Genest, C. and Neslehova, J. G. On tests of radial symmetry for bivariatecopulas, Statistical Papers 55, 1107-1119, 2014.
  • ojasiewicz, S. Introduction to the Theory of Real Functions, Wiley, Chichester, 1988.
  • Nelsen, R.B. Some concepts of bivariate symmetry, Journal of Nonparametric Statistics 3, 95-101, 1993.
  • Nelsen, R.B. An Introduction to Copulas. Second Edition, Springer, New York, 2006.
  • Nelsen, R.B. Extremes of nonexchangeability, Statistical Papers 48, 329-336, 2007.
  • Rosco, J. F. and Joe, H. Measures of tail asymmetry for bivariate copulas, Statistical Papers 4, 709-726, 2013.
  • Segers, J. Asymptotics of empirical copula processes under non-restrictive smoothness as- sumptions, Bernoulli 18, 764-782, 2012.
  • Siburg, K.F. and Stoimenov, P. A. A scalar product for copulas, Journal of Mathematical Analysis and Applications 344(1), 429-439, 2008.
  • Siburg, K. F. and Stoimenov, P. A. Symmetry of functions and exchangeability of random variables, Statical Papers 52, 1-15, 2011.
  • Sklar, A. Functions de répartition a n dimensions et leurs marges, Publ. Inst. Statistique Univ. Paris 8, 229-231, 1959.
There are 19 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Statistics
Authors

Ahmad Alikhani-vafa This is me

Ali Dolati This is me

Publication Date June 1, 2018
Published in Issue Year 2018 Volume: 47 Issue: 3

Cite

APA Alikhani-vafa, A., & Dolati, A. (2018). A measure of radial asymmetry for bivariate copulas based on Sobolev norm. Hacettepe Journal of Mathematics and Statistics, 47(3), 649-658.
AMA Alikhani-vafa A, Dolati A. A measure of radial asymmetry for bivariate copulas based on Sobolev norm. Hacettepe Journal of Mathematics and Statistics. June 2018;47(3):649-658.
Chicago Alikhani-vafa, Ahmad, and Ali Dolati. “A Measure of Radial Asymmetry for Bivariate Copulas Based on Sobolev Norm”. Hacettepe Journal of Mathematics and Statistics 47, no. 3 (June 2018): 649-58.
EndNote Alikhani-vafa A, Dolati A (June 1, 2018) A measure of radial asymmetry for bivariate copulas based on Sobolev norm. Hacettepe Journal of Mathematics and Statistics 47 3 649–658.
IEEE A. Alikhani-vafa and A. Dolati, “A measure of radial asymmetry for bivariate copulas based on Sobolev norm”, Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 3, pp. 649–658, 2018.
ISNAD Alikhani-vafa, Ahmad - Dolati, Ali. “A Measure of Radial Asymmetry for Bivariate Copulas Based on Sobolev Norm”. Hacettepe Journal of Mathematics and Statistics 47/3 (June 2018), 649-658.
JAMA Alikhani-vafa A, Dolati A. A measure of radial asymmetry for bivariate copulas based on Sobolev norm. Hacettepe Journal of Mathematics and Statistics. 2018;47:649–658.
MLA Alikhani-vafa, Ahmad and Ali Dolati. “A Measure of Radial Asymmetry for Bivariate Copulas Based on Sobolev Norm”. Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 3, 2018, pp. 649-58.
Vancouver Alikhani-vafa A, Dolati A. A measure of radial asymmetry for bivariate copulas based on Sobolev norm. Hacettepe Journal of Mathematics and Statistics. 2018;47(3):649-58.