Year 2018,
Volume: 47 Issue: 3, 649 - 658, 01.06.2018
Ahmad Alikhani-vafa
Ali Dolati
References
- Bouzebda, S. and Cher, M. Test of symmetry based on copula function, Journal of Statistical
Planning and Inference 142, 1262-1271, 2012.
- Darsow, W. F. and Olsen, E. T. Norms for copulas, International Journal of Mathematics
and Mathematical Sciences 18, 417-436, 1995.
- Dehgani, A. Dolati, A., and Úbeda-Flores, M. Measures of radial asymmetry for bivariate
random vectors, Statistical Papers 54, 271-286, 2013.
- Denuit, M., Purcaru, O. and Van Keilegom, I. Bivariate Archimedean copula modelling for
loss-ALAE data in non-life insurance, Working paper, UCL, 2004.
- Durante, F. and Mesiar, R. L1-measure of non-exchangeability for bivariate extreme value
and Archimax copulas, Journal of Mathematical Analysis and Applications 369, 610-615,
2010.
- Fermanian, J. D. and Scaillet, O. Nonparametric estimation of copulas for time series,
Journal of Risk 5, 25-54, 2003.
- Fermanian, J. D., Radulovic, D. and Wegkamp, M. Weak convergence of empirical copula
processes, Bernoulli 10 (5), 847860, 2004.
- Frees, E. and Valdez, E. Understanding relationships using copulas, North American Actuarial
Journal 2, 1-25, 1998.
- Klugman, S. and Parsa, R. Fitting bivariate loss distributions with copulas, Insurance:
Mathematics and Economics 24, 139-148, 1999.
- Genest, C. and Neslehova, J. G. On tests of radial symmetry for bivariatecopulas, Statistical
Papers 55, 1107-1119, 2014.
- ojasiewicz, S. Introduction to the Theory of Real Functions, Wiley, Chichester, 1988.
- Nelsen, R.B. Some concepts of bivariate symmetry, Journal of Nonparametric Statistics 3,
95-101, 1993.
- Nelsen, R.B. An Introduction to Copulas. Second Edition, Springer, New York, 2006.
- Nelsen, R.B. Extremes of nonexchangeability, Statistical Papers 48, 329-336, 2007.
- Rosco, J. F. and Joe, H. Measures of tail asymmetry for bivariate copulas, Statistical Papers
4, 709-726, 2013.
- Segers, J. Asymptotics of empirical copula processes under non-restrictive smoothness as-
sumptions, Bernoulli 18, 764-782, 2012.
- Siburg, K.F. and Stoimenov, P. A. A scalar product for copulas, Journal of Mathematical
Analysis and Applications 344(1), 429-439, 2008.
- Siburg, K. F. and Stoimenov, P. A. Symmetry of functions and exchangeability of random
variables, Statical Papers 52, 1-15, 2011.
- Sklar, A. Functions de répartition a n dimensions et leurs marges, Publ. Inst. Statistique
Univ. Paris 8, 229-231, 1959.
A measure of radial asymmetry for bivariate copulas based on Sobolev norm
Year 2018,
Volume: 47 Issue: 3, 649 - 658, 01.06.2018
Ahmad Alikhani-vafa
Ali Dolati
Abstract
The modified Sobolev norm is used to construct an index for measuring the degree of radial asymmetry of a copula. We study various aspects of this index and discuss its rank-based estimator. Through simulation and a real data example, we compare the proposed index with the other radial asymmetry measures.
References
- Bouzebda, S. and Cher, M. Test of symmetry based on copula function, Journal of Statistical
Planning and Inference 142, 1262-1271, 2012.
- Darsow, W. F. and Olsen, E. T. Norms for copulas, International Journal of Mathematics
and Mathematical Sciences 18, 417-436, 1995.
- Dehgani, A. Dolati, A., and Úbeda-Flores, M. Measures of radial asymmetry for bivariate
random vectors, Statistical Papers 54, 271-286, 2013.
- Denuit, M., Purcaru, O. and Van Keilegom, I. Bivariate Archimedean copula modelling for
loss-ALAE data in non-life insurance, Working paper, UCL, 2004.
- Durante, F. and Mesiar, R. L1-measure of non-exchangeability for bivariate extreme value
and Archimax copulas, Journal of Mathematical Analysis and Applications 369, 610-615,
2010.
- Fermanian, J. D. and Scaillet, O. Nonparametric estimation of copulas for time series,
Journal of Risk 5, 25-54, 2003.
- Fermanian, J. D., Radulovic, D. and Wegkamp, M. Weak convergence of empirical copula
processes, Bernoulli 10 (5), 847860, 2004.
- Frees, E. and Valdez, E. Understanding relationships using copulas, North American Actuarial
Journal 2, 1-25, 1998.
- Klugman, S. and Parsa, R. Fitting bivariate loss distributions with copulas, Insurance:
Mathematics and Economics 24, 139-148, 1999.
- Genest, C. and Neslehova, J. G. On tests of radial symmetry for bivariatecopulas, Statistical
Papers 55, 1107-1119, 2014.
- ojasiewicz, S. Introduction to the Theory of Real Functions, Wiley, Chichester, 1988.
- Nelsen, R.B. Some concepts of bivariate symmetry, Journal of Nonparametric Statistics 3,
95-101, 1993.
- Nelsen, R.B. An Introduction to Copulas. Second Edition, Springer, New York, 2006.
- Nelsen, R.B. Extremes of nonexchangeability, Statistical Papers 48, 329-336, 2007.
- Rosco, J. F. and Joe, H. Measures of tail asymmetry for bivariate copulas, Statistical Papers
4, 709-726, 2013.
- Segers, J. Asymptotics of empirical copula processes under non-restrictive smoothness as-
sumptions, Bernoulli 18, 764-782, 2012.
- Siburg, K.F. and Stoimenov, P. A. A scalar product for copulas, Journal of Mathematical
Analysis and Applications 344(1), 429-439, 2008.
- Siburg, K. F. and Stoimenov, P. A. Symmetry of functions and exchangeability of random
variables, Statical Papers 52, 1-15, 2011.
- Sklar, A. Functions de répartition a n dimensions et leurs marges, Publ. Inst. Statistique
Univ. Paris 8, 229-231, 1959.