Research Article
BibTex RIS Cite

A combinatorial approach to the classification of resolution graphs of weighted homogeneous plane curve singularities

Year 2018, Volume: 47 Issue: 4, 805 - 812, 01.08.2018

Abstract

In this article we describe the classification of the resolution graphs of weighted homogeneous plane curve singularities in terms of their weights by using the concepts of graph theory and combinatorics. The classification shows that the resolution graph of a weighted homogeneous plane curve singularity is always a caterpillar.

References

  • Arnold, V. I.; Gusein-Zade, S. M.; Varchenko,A. N. Singularities of Differentiable Maps, Volume I, Birkhäuser, Boston Basel Berlin (1985).
  • Cutkosky, S. D. and Srinivasan, H.; The algebraic fundamental group of a curve singularity, Journal of Algebra 230, 101-126, (2000).
  • De Jong, T. and Pster, G.; Local Analytic Geometry, Vieweg (2000).
  • Jingen, Y.; Curve Singularities and Graphs, Acta Mathematica Sinica, 6 (1), 87-96, (1990).
  • Kollár, J.; Lectures on Resolution of Singularities, Princeton University Press (2007).
  • Kang, C.; Analytic Types of Plane Curve Singularities defined by Weighted Homogeneous Polynomials, Trans. A.M.S. 352 (9), 3995-4006, (2000).
  • Muhly, H.T. and Zariski, O.; The Resolution of Singularities of an Algebraic curve, Amer.J.Math., 61 (1), 107-114, (1939).
  • Saito, K.; Quasihomogene isolierte singularitäten von hyperächen, Invent. Math. 14, 123- 142, (1971).
  • Wall, C.T.C.; Singular Points of Plane Curves, Cambridge University Press (2004).
Year 2018, Volume: 47 Issue: 4, 805 - 812, 01.08.2018

Abstract

References

  • Arnold, V. I.; Gusein-Zade, S. M.; Varchenko,A. N. Singularities of Differentiable Maps, Volume I, Birkhäuser, Boston Basel Berlin (1985).
  • Cutkosky, S. D. and Srinivasan, H.; The algebraic fundamental group of a curve singularity, Journal of Algebra 230, 101-126, (2000).
  • De Jong, T. and Pster, G.; Local Analytic Geometry, Vieweg (2000).
  • Jingen, Y.; Curve Singularities and Graphs, Acta Mathematica Sinica, 6 (1), 87-96, (1990).
  • Kollár, J.; Lectures on Resolution of Singularities, Princeton University Press (2007).
  • Kang, C.; Analytic Types of Plane Curve Singularities defined by Weighted Homogeneous Polynomials, Trans. A.M.S. 352 (9), 3995-4006, (2000).
  • Muhly, H.T. and Zariski, O.; The Resolution of Singularities of an Algebraic curve, Amer.J.Math., 61 (1), 107-114, (1939).
  • Saito, K.; Quasihomogene isolierte singularitäten von hyperächen, Invent. Math. 14, 123- 142, (1971).
  • Wall, C.T.C.; Singular Points of Plane Curves, Cambridge University Press (2004).
There are 9 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Muhammad Ahsan Binyamin

Hafız Muhammad Afzal Siddiqui

Amir Shehzad This is me

Publication Date August 1, 2018
Published in Issue Year 2018 Volume: 47 Issue: 4

Cite

APA Binyamin, M. A., Siddiqui, H. M. A., & Shehzad, A. (2018). A combinatorial approach to the classification of resolution graphs of weighted homogeneous plane curve singularities. Hacettepe Journal of Mathematics and Statistics, 47(4), 805-812.
AMA Binyamin MA, Siddiqui HMA, Shehzad A. A combinatorial approach to the classification of resolution graphs of weighted homogeneous plane curve singularities. Hacettepe Journal of Mathematics and Statistics. August 2018;47(4):805-812.
Chicago Binyamin, Muhammad Ahsan, Hafız Muhammad Afzal Siddiqui, and Amir Shehzad. “A Combinatorial Approach to the classification of Resolution Graphs of Weighted Homogeneous Plane Curve Singularities”. Hacettepe Journal of Mathematics and Statistics 47, no. 4 (August 2018): 805-12.
EndNote Binyamin MA, Siddiqui HMA, Shehzad A (August 1, 2018) A combinatorial approach to the classification of resolution graphs of weighted homogeneous plane curve singularities. Hacettepe Journal of Mathematics and Statistics 47 4 805–812.
IEEE M. A. Binyamin, H. M. A. Siddiqui, and A. Shehzad, “A combinatorial approach to the classification of resolution graphs of weighted homogeneous plane curve singularities”, Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 4, pp. 805–812, 2018.
ISNAD Binyamin, Muhammad Ahsan et al. “A Combinatorial Approach to the classification of Resolution Graphs of Weighted Homogeneous Plane Curve Singularities”. Hacettepe Journal of Mathematics and Statistics 47/4 (August 2018), 805-812.
JAMA Binyamin MA, Siddiqui HMA, Shehzad A. A combinatorial approach to the classification of resolution graphs of weighted homogeneous plane curve singularities. Hacettepe Journal of Mathematics and Statistics. 2018;47:805–812.
MLA Binyamin, Muhammad Ahsan et al. “A Combinatorial Approach to the classification of Resolution Graphs of Weighted Homogeneous Plane Curve Singularities”. Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 4, 2018, pp. 805-12.
Vancouver Binyamin MA, Siddiqui HMA, Shehzad A. A combinatorial approach to the classification of resolution graphs of weighted homogeneous plane curve singularities. Hacettepe Journal of Mathematics and Statistics. 2018;47(4):805-12.