Identification and estimation for generalized varying coefficient partially linear models
Year 2018,
Volume: 47 Issue: 4, 1041 - 1060, 01.08.2018
Mingqiu Wang
Xiuli Wang
Muhammad Amin
Abstract
The generalized varying coefficient partially linear model (GVCPLM) enjoys the flexibility of the generalized varying coefficient model and the parsimony and interpretability of the generalized linear model. Statistical inference of GVCPLM is restricted with a condition that the components of varying and constant coefficients are known in advance. Alternatively, the current study is focused on the structure's identification of varying and constant coefficient for GVCPLM and it is based on the spline basis approximation and the group SCAD. This is proved that the proposed method can consistently determine the structure of the GVCPLM under certain conditions, which means that it can accurately choose the varying and constant coefficients precisely. Simulation studies and a real data application are conducted to assess the infinite sample performance of the proposed method.
References
- Ahmad, I, Leelahanon, S, Li, Q. Efficient estimation of a semiparametric partially linear
varying coecient model. Annals of Statistics. 33, 258283, 2005.
- Cai, Z, Fan, J, Li, R. Efficient estimation and inferences for varying-coefficient models.
Journal of the American Statistical Association. 95, 888902, 2000.
- Fan, J, Li, R. Variable selection via nonconcave penalized likelihood and its oracle properties.
Journal of the American Statistical Association. 6, 13481360, 2001.
- Hastie, T, Tibshirani, R. Varying-coefficient models. Journal of the Royal Statistical Society,
Series B. 55, 757796, 1993.
- Hu, T, Cui, H. Robust estimates in generalised varying-coefficient partially linear models.
Journal of Nonparametric Statistics. 22, 737754, 2010.
- Hu, T, Xia, Y. Adaptive semi-varying coefficient model selection. Statistica Sinica. 22, 575
599, 2012.
- Huang, J, Horowitz, JL, Wei FR. Variable selection in nonparametric additive models.
Annals of Statistics. 38, 22822313, 2010.
- Huang, J, Wei, F, Ma, S. Semiparametric regression pursuit. Statistica Sinica. 22, 1403
1426, 2012.
- Huang, JHZ, Wu, CO, Zhou, L. Polynomial spline estimation and inference for varying
coefficient models with longitudinal data. Statistica Sinica. 14, 763788, 2004.
- Kim, Y, Choi, H, Oh, H. Smoothly clipped absolute deviation on high dimensions. Journal
of the American Statistical Association. 103, 16561673, 2008.
- Kai, B, Li, R, Zou, H. New efficient estimation and variable methods for semiparametric
varying-coefficient partially linear models. Annals of Statistics. 39, 305332, 2011.
- Lam, C, Fan, J. Prole-kernel likelihood inference with diverging number of parameters.
Annals of Statistics. 36, 22322260, 2008.
- Li, Q, Huang, CJ, Li, D, Fu, TT. Semiparametric smooth coefficient models. Journal of
Business and Economic Statistics. 20, 412422, 2002.
- Li, R, Liang, H. Variable selection in semiparametric regression modeling. Annals of Statis-
tics. 36, 261286, 2008.
- Li G, Xue L, Lian H. SCAD-penalised generalised additive models with non-polynomial
dimensionality. Journal of Nonparametric Statistics, 24, 681697, 2012.
- Li, G, Lin, L, Zhu, L. Empirical likelihood for a varying coefficient partially linear model
with diverging number of parameters. Journal of Multivariate Analysis. 105, 85111, 2012.
- Lian, H. Variable selection for high-dimensional generalized varying-coefficient models. Sta-
tistica Sinica. 22, 15631588, 2012.
- Lian, H, Chen, X, Yang, JY. Identication of partially linear structure in additive models
with an application to gene expression prediction from sequences. Biometrics. 68, 437445,
2012.
- Lian, H, Du, P, Li, Y, Liang, H. Partially linear structure identication in generalized
additive models with NP-dimensionality. Computational Statistics & Data Analysis. 80,
197208, 2014.
- Lian, H, Liang, H, Ruppert, D. Separation of covariates into nonparametric and parametric
parts in high-dimensional partially linear additive models. Statistica Sinica. 25, 591607,
2015.
- Lu, Y:. Generalized partially linear varying-coefficient models. Journal of Statistical Plan-
ning and Inference. 138, 901914, 2008.
- McCullagh, P, Nelder, JA. Generalized Linear Models. Chapman and Hall, London (1989).
- Schwarz, G. Estimating the dimension of a model. Annals of Statistics. 6, 461464, 1978.
- Schumaker, LL. Spline Functions: Basic Theory. Wiley, New York (1981).
- Tang, Y, Wang, HJ, Zhu, Z, Song, X. A unified variable selection approach for varying
coefficient models. Statistica Sinica. 22, 601628, 2012.
- Wang, D, Kulasekera, KB. Parametric component detection and variable selection in
varying-coefficient partially linear models. Journal of Multivariate Analysis. 112, 117129,
2012.
- Wang, H., Li, R., Tsai, C.L. Tuning Parameter Selectors for the Smoothly Clipped Absolute
Deviation Method. Biometrika, 94, 553568, 2007.
- Wang, M, Song, L. Identication for semiparametric varying coefficient partially linear
models. Statist. Statistics & Probability Letters. 83, 13111320, 2013.
- Xia, Y, Zhang, W, Tong, H. Efficient estimation for semivarying-coefficient models.
Biometrika. 91, 661681, 2004.
- Zhang, H, Cheng, G, Liu, Y. Linear or nonlinear? Automatic structure discovery for par-
tially linear models. Journal of the American Statistical Association. 106, 10991112, 2011.
- Zhou ,S, Shen, X,Wolfe, DA. Local asymptotics for regression splines and confidence regions.
Annals of Statistics. 26, 17601782, 1998.
Year 2018,
Volume: 47 Issue: 4, 1041 - 1060, 01.08.2018
Mingqiu Wang
Xiuli Wang
Muhammad Amin
References
- Ahmad, I, Leelahanon, S, Li, Q. Efficient estimation of a semiparametric partially linear
varying coecient model. Annals of Statistics. 33, 258283, 2005.
- Cai, Z, Fan, J, Li, R. Efficient estimation and inferences for varying-coefficient models.
Journal of the American Statistical Association. 95, 888902, 2000.
- Fan, J, Li, R. Variable selection via nonconcave penalized likelihood and its oracle properties.
Journal of the American Statistical Association. 6, 13481360, 2001.
- Hastie, T, Tibshirani, R. Varying-coefficient models. Journal of the Royal Statistical Society,
Series B. 55, 757796, 1993.
- Hu, T, Cui, H. Robust estimates in generalised varying-coefficient partially linear models.
Journal of Nonparametric Statistics. 22, 737754, 2010.
- Hu, T, Xia, Y. Adaptive semi-varying coefficient model selection. Statistica Sinica. 22, 575
599, 2012.
- Huang, J, Horowitz, JL, Wei FR. Variable selection in nonparametric additive models.
Annals of Statistics. 38, 22822313, 2010.
- Huang, J, Wei, F, Ma, S. Semiparametric regression pursuit. Statistica Sinica. 22, 1403
1426, 2012.
- Huang, JHZ, Wu, CO, Zhou, L. Polynomial spline estimation and inference for varying
coefficient models with longitudinal data. Statistica Sinica. 14, 763788, 2004.
- Kim, Y, Choi, H, Oh, H. Smoothly clipped absolute deviation on high dimensions. Journal
of the American Statistical Association. 103, 16561673, 2008.
- Kai, B, Li, R, Zou, H. New efficient estimation and variable methods for semiparametric
varying-coefficient partially linear models. Annals of Statistics. 39, 305332, 2011.
- Lam, C, Fan, J. Prole-kernel likelihood inference with diverging number of parameters.
Annals of Statistics. 36, 22322260, 2008.
- Li, Q, Huang, CJ, Li, D, Fu, TT. Semiparametric smooth coefficient models. Journal of
Business and Economic Statistics. 20, 412422, 2002.
- Li, R, Liang, H. Variable selection in semiparametric regression modeling. Annals of Statis-
tics. 36, 261286, 2008.
- Li G, Xue L, Lian H. SCAD-penalised generalised additive models with non-polynomial
dimensionality. Journal of Nonparametric Statistics, 24, 681697, 2012.
- Li, G, Lin, L, Zhu, L. Empirical likelihood for a varying coefficient partially linear model
with diverging number of parameters. Journal of Multivariate Analysis. 105, 85111, 2012.
- Lian, H. Variable selection for high-dimensional generalized varying-coefficient models. Sta-
tistica Sinica. 22, 15631588, 2012.
- Lian, H, Chen, X, Yang, JY. Identication of partially linear structure in additive models
with an application to gene expression prediction from sequences. Biometrics. 68, 437445,
2012.
- Lian, H, Du, P, Li, Y, Liang, H. Partially linear structure identication in generalized
additive models with NP-dimensionality. Computational Statistics & Data Analysis. 80,
197208, 2014.
- Lian, H, Liang, H, Ruppert, D. Separation of covariates into nonparametric and parametric
parts in high-dimensional partially linear additive models. Statistica Sinica. 25, 591607,
2015.
- Lu, Y:. Generalized partially linear varying-coefficient models. Journal of Statistical Plan-
ning and Inference. 138, 901914, 2008.
- McCullagh, P, Nelder, JA. Generalized Linear Models. Chapman and Hall, London (1989).
- Schwarz, G. Estimating the dimension of a model. Annals of Statistics. 6, 461464, 1978.
- Schumaker, LL. Spline Functions: Basic Theory. Wiley, New York (1981).
- Tang, Y, Wang, HJ, Zhu, Z, Song, X. A unified variable selection approach for varying
coefficient models. Statistica Sinica. 22, 601628, 2012.
- Wang, D, Kulasekera, KB. Parametric component detection and variable selection in
varying-coefficient partially linear models. Journal of Multivariate Analysis. 112, 117129,
2012.
- Wang, H., Li, R., Tsai, C.L. Tuning Parameter Selectors for the Smoothly Clipped Absolute
Deviation Method. Biometrika, 94, 553568, 2007.
- Wang, M, Song, L. Identication for semiparametric varying coefficient partially linear
models. Statist. Statistics & Probability Letters. 83, 13111320, 2013.
- Xia, Y, Zhang, W, Tong, H. Efficient estimation for semivarying-coefficient models.
Biometrika. 91, 661681, 2004.
- Zhang, H, Cheng, G, Liu, Y. Linear or nonlinear? Automatic structure discovery for par-
tially linear models. Journal of the American Statistical Association. 106, 10991112, 2011.
- Zhou ,S, Shen, X,Wolfe, DA. Local asymptotics for regression splines and confidence regions.
Annals of Statistics. 26, 17601782, 1998.