Research Article
BibTex RIS Cite

A multiplier related to symmetric stable processes

Year 2017, Volume: 46 Issue: 2, 217 - 228, 01.04.2017

Abstract

In two recent papers [5] and [6], we generalized some classical results of Harmonic Analysis using probabilistic approach by means of a $d$-
dimensional rotationally symmetric stable process. These results allow one to discuss some boundedness conditions with weaker hypotheses.
In this paper, we study a multiplier theorem using these more general results. We consider a product process consisting of a $d$-dimensional
symmetric stable process and a 1-dimensional Brownian motion, and use properties of jump processes to obtain bounds on jump terms and
the $L^p(\mathbb{R}^d)$-norm of a new operator.

References

  • Applebaum, D. Lévy Processes and Stochastic Calculus (Cambridge Studies in Advanced Mathematics), 2nd ed., Cambridge University Press, 2009.
  • Bass, R. F. Probabilistic Techniques in Analysis. Springer, New York,1995.
  • Bass, R. F. Stochastic Processes (Cambridge Series in Statistical and Probabilistic Mathematics), 1 ed., Cambridge University Press, 2011.
  • Bouleau, N. and Lamberton, D. Théorie de Littlewood-Paley-Stein et processus stables, Sémin. Probab. (Strasbourg) 20 (1986), 162185.
  • Karlı, D. Harnack Inequality and Regularity for a Product of Symmetric Stable Process and Brownian Motion, Potential Analysis 38 (2011), no. 1, 95117. (DOI:10.1007/s11118-011- 9265-6) arXiv:1010.4904v2.
  • Karlı, D. An Extension of a Boundedness Result for Singular Integral Operators, Colloquium Mathematicum 145 (2016), no. 1, 1533. (DOI: 10.4064/cm6722-1-2016) arXiv:1501.05164.
  • Meyer, P.A. Démonstration Probabiliste de Certaines Inégalites de Littlewood-Paley, Sémin. Probab. (Strasbourg) 10 (1976), 164174.
  • Meyer, P.A. Démonstration probabiliste de certaines inégalites de Littlewood-Paley. Exposé IV : semi-groupes de convolution symétriques. Séminaire de probabilités (Strasbourg) 10, (1976), 175-183.
  • Meyer, P.A. Retour sur la theorie de Littlewood-Paley. Séminaire de probabilités (Strasbourg) 15, (1981), 151-166.
  • Sato, K.-I. Lévy Processes and Innitely Divisible Distributions (Cambridge Studies in Advanced Mathematics), Cambridge University Press, 1999.
Year 2017, Volume: 46 Issue: 2, 217 - 228, 01.04.2017

Abstract

References

  • Applebaum, D. Lévy Processes and Stochastic Calculus (Cambridge Studies in Advanced Mathematics), 2nd ed., Cambridge University Press, 2009.
  • Bass, R. F. Probabilistic Techniques in Analysis. Springer, New York,1995.
  • Bass, R. F. Stochastic Processes (Cambridge Series in Statistical and Probabilistic Mathematics), 1 ed., Cambridge University Press, 2011.
  • Bouleau, N. and Lamberton, D. Théorie de Littlewood-Paley-Stein et processus stables, Sémin. Probab. (Strasbourg) 20 (1986), 162185.
  • Karlı, D. Harnack Inequality and Regularity for a Product of Symmetric Stable Process and Brownian Motion, Potential Analysis 38 (2011), no. 1, 95117. (DOI:10.1007/s11118-011- 9265-6) arXiv:1010.4904v2.
  • Karlı, D. An Extension of a Boundedness Result for Singular Integral Operators, Colloquium Mathematicum 145 (2016), no. 1, 1533. (DOI: 10.4064/cm6722-1-2016) arXiv:1501.05164.
  • Meyer, P.A. Démonstration Probabiliste de Certaines Inégalites de Littlewood-Paley, Sémin. Probab. (Strasbourg) 10 (1976), 164174.
  • Meyer, P.A. Démonstration probabiliste de certaines inégalites de Littlewood-Paley. Exposé IV : semi-groupes de convolution symétriques. Séminaire de probabilités (Strasbourg) 10, (1976), 175-183.
  • Meyer, P.A. Retour sur la theorie de Littlewood-Paley. Séminaire de probabilités (Strasbourg) 15, (1981), 151-166.
  • Sato, K.-I. Lévy Processes and Innitely Divisible Distributions (Cambridge Studies in Advanced Mathematics), Cambridge University Press, 1999.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Deniz Karlı This is me

Publication Date April 1, 2017
Published in Issue Year 2017 Volume: 46 Issue: 2

Cite

APA Karlı, D. (2017). A multiplier related to symmetric stable processes. Hacettepe Journal of Mathematics and Statistics, 46(2), 217-228.
AMA Karlı D. A multiplier related to symmetric stable processes. Hacettepe Journal of Mathematics and Statistics. April 2017;46(2):217-228.
Chicago Karlı, Deniz. “A Multiplier Related to Symmetric Stable Processes”. Hacettepe Journal of Mathematics and Statistics 46, no. 2 (April 2017): 217-28.
EndNote Karlı D (April 1, 2017) A multiplier related to symmetric stable processes. Hacettepe Journal of Mathematics and Statistics 46 2 217–228.
IEEE D. Karlı, “A multiplier related to symmetric stable processes”, Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 2, pp. 217–228, 2017.
ISNAD Karlı, Deniz. “A Multiplier Related to Symmetric Stable Processes”. Hacettepe Journal of Mathematics and Statistics 46/2 (April 2017), 217-228.
JAMA Karlı D. A multiplier related to symmetric stable processes. Hacettepe Journal of Mathematics and Statistics. 2017;46:217–228.
MLA Karlı, Deniz. “A Multiplier Related to Symmetric Stable Processes”. Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 2, 2017, pp. 217-28.
Vancouver Karlı D. A multiplier related to symmetric stable processes. Hacettepe Journal of Mathematics and Statistics. 2017;46(2):217-28.