In this paper we prove that for a monoid $S$, products of indecomposable right $S$-acts are indecomposable if and only if $S$ contains a right
zero. Besides, we prove that subacts of indecomposable right $S$-acts are indecomposable if and only if $S$ is left reversible. Ultimately, we prove that the one element right $S$-act $\Theta_S$ is product flat if and only if $S$ contains a left zero.
Primary Language | English |
---|---|
Subjects | Mathematical Sciences |
Journal Section | Mathematics |
Authors | |
Publication Date | April 1, 2017 |
Published in Issue | Year 2017 Volume: 46 Issue: 2 |