Research Article
BibTex RIS Cite

Monoids over which products of indecomposable acts are indecomposable

Year 2017, Volume: 46 Issue: 2, 229 - 237, 01.04.2017

Abstract

In this paper we prove that for a monoid $S$, products of indecomposable right $S$-acts are indecomposable if and only if $S$ contains a right
zero. Besides, we prove that subacts of indecomposable right $S$-acts are indecomposable if and only if $S$ is left reversible. Ultimately, we prove that the one element right $S$-act $\Theta_S$ is product flat if and only if $S$ contains a left zero.

References

  • Adamek, J., Herrlich, H. and Strecker, G. Abstract and Concrete Categories The Joy of Cats (John Wiley and Sons, New York, 1990).
  • Bulman-Fleming, S. Products of projective S-systems, Comm. Algebra 19 (3), 951964, 1991.
  • Bulman-Fleming, S. and Laan, V. Tensor products and preservation of limits, for acts over monoids, Semigroup Forum 63, 161179, 2001.
  • Bulman-Fleming, S and McDowell, K. Coherent monoids, in: Latices, Semigroups and Universal Algebra, ed. J. Almeida et al. (Plenum Press, New York, 1990).
  • Gould, V. Coherent monoids, J. Austral. Math. Soc. 53(Series A), 166182, 1992.
  • Kilp, M., Knauer, U. and Mikhalev, A. Monoids, Acts and Categories, (W. de gruyter, Berlin, 2000).
  • Nico, W.R. A classication of indecomposable S-sets, J. Algebra 54(1), 260272, 1978.
  • Renshaw, J. Monoids for which condition (P)acts are projective, Semigroup Forum 61(1), 4656, 1998.
  • Sedaghatjoo, M., Khosravi, R. and Ershad, M. Principally weakly and weakly coherent monoids, Comm. Algebra 37(12), 42814295, 2009.
Year 2017, Volume: 46 Issue: 2, 229 - 237, 01.04.2017

Abstract

References

  • Adamek, J., Herrlich, H. and Strecker, G. Abstract and Concrete Categories The Joy of Cats (John Wiley and Sons, New York, 1990).
  • Bulman-Fleming, S. Products of projective S-systems, Comm. Algebra 19 (3), 951964, 1991.
  • Bulman-Fleming, S. and Laan, V. Tensor products and preservation of limits, for acts over monoids, Semigroup Forum 63, 161179, 2001.
  • Bulman-Fleming, S and McDowell, K. Coherent monoids, in: Latices, Semigroups and Universal Algebra, ed. J. Almeida et al. (Plenum Press, New York, 1990).
  • Gould, V. Coherent monoids, J. Austral. Math. Soc. 53(Series A), 166182, 1992.
  • Kilp, M., Knauer, U. and Mikhalev, A. Monoids, Acts and Categories, (W. de gruyter, Berlin, 2000).
  • Nico, W.R. A classication of indecomposable S-sets, J. Algebra 54(1), 260272, 1978.
  • Renshaw, J. Monoids for which condition (P)acts are projective, Semigroup Forum 61(1), 4656, 1998.
  • Sedaghatjoo, M., Khosravi, R. and Ershad, M. Principally weakly and weakly coherent monoids, Comm. Algebra 37(12), 42814295, 2009.
There are 9 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Mojtaba Sedaghatjoo This is me

Ahmad Khaksari This is me

Publication Date April 1, 2017
Published in Issue Year 2017 Volume: 46 Issue: 2

Cite

APA Sedaghatjoo, M., & Khaksari, A. (2017). Monoids over which products of indecomposable acts are indecomposable. Hacettepe Journal of Mathematics and Statistics, 46(2), 229-237.
AMA Sedaghatjoo M, Khaksari A. Monoids over which products of indecomposable acts are indecomposable. Hacettepe Journal of Mathematics and Statistics. April 2017;46(2):229-237.
Chicago Sedaghatjoo, Mojtaba, and Ahmad Khaksari. “Monoids over Which Products of Indecomposable Acts Are Indecomposable”. Hacettepe Journal of Mathematics and Statistics 46, no. 2 (April 2017): 229-37.
EndNote Sedaghatjoo M, Khaksari A (April 1, 2017) Monoids over which products of indecomposable acts are indecomposable. Hacettepe Journal of Mathematics and Statistics 46 2 229–237.
IEEE M. Sedaghatjoo and A. Khaksari, “Monoids over which products of indecomposable acts are indecomposable”, Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 2, pp. 229–237, 2017.
ISNAD Sedaghatjoo, Mojtaba - Khaksari, Ahmad. “Monoids over Which Products of Indecomposable Acts Are Indecomposable”. Hacettepe Journal of Mathematics and Statistics 46/2 (April 2017), 229-237.
JAMA Sedaghatjoo M, Khaksari A. Monoids over which products of indecomposable acts are indecomposable. Hacettepe Journal of Mathematics and Statistics. 2017;46:229–237.
MLA Sedaghatjoo, Mojtaba and Ahmad Khaksari. “Monoids over Which Products of Indecomposable Acts Are Indecomposable”. Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 2, 2017, pp. 229-37.
Vancouver Sedaghatjoo M, Khaksari A. Monoids over which products of indecomposable acts are indecomposable. Hacettepe Journal of Mathematics and Statistics. 2017;46(2):229-37.