Research Article
BibTex RIS Cite

Characterizations of quasi-metric completeness in terms of Kannan-type fixed point theorems

Year 2017, Volume: 46 Issue: 1, 67 - 76, 01.02.2017

Abstract

We obtain quasi-metric versions of Kannan's fixed point theorem for self-mappings and multivalued mappings, respectively, which are used to deduce characterizations of d-sequentially complete and of left K-sequentially complete quasi-metric spaces, respectively.

References

  • C. Alegre and J. Marín, Modified w-distances on quasi-metric spaces and a fixed point theorem on complete quasi-metric spaces, Top. Appl. 203 (2016), 32-41.
  • C. Alegre, J. Marín and S. Romaguera, A fixed point theorem for generalized contractions involving w-distances on complete quasi-metric spaces, Fixed Point Theory Appl. 2014, 2014:40.
  • S. Al-Homidan, Q.H. Ansari and J.C. Yao, Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory, Nonlinear Anal. TM&A 69 (2008), 126-139.
  • M. Ali-Akbari, B. Honari, M. Pourmahdian and M.M. Rezaii, The space of formal balls and models of quasi-metric spaces, Math. Struct. Comput. Sci. 19 (2009), 337-355.
  • I. Altun, N. Al Ari, M. Jleli, A. Lashin and B. Samet, A new concept of $(\alpha, F_d)$-contraction on quasi metric space, J. Nonlinear Sci. Appl. 9 (2016), 3354-3361.
  • J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241-251.
  • S. Cobzaş, Completeness in quasi-metric spaces and Ekeland Variational Principle, Top. Appl. 158 (2011), 1073-1084.
  • S. Cobzaş, Functional Analysis in Asymmetric Normed Spaces, Birkhäuser, Springer Basel, 2013.
  • H. Dağ, G. Minak and I. Altun, Some fixed point results for multivalued F-contractions on quasi metric spaces, RACSAM, DOI: 10.1007/s13398-016-0285-3, to appear.
  • T.K. Hu, On a fixed point theorem for metric spaces, Amer. Math. Monthly 74 (1967), 436-437.
  • R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71-76.
  • E. Karapinar and S. Romaguera, On the weak form of Ekeland's Variational Principle in quasi-metric spaces, Top. Appl. 184 (2015), 54-60.
  • A.W. Kirk, Caristi's fixed point theorem and metric convexity, Colloq. Math. 36 (1976), 81-86.
  • H.P.A. Künzi, Nonsymmetric distances and their associated topologies: About the origins of basic ideas in the area of asymmetric topology, in: C.E. Aull, R. Lowen (Eds.), Handbook of the History of General Topology, vol. 3, Kluwer, Dordrecht, 2001, pp. 853-968.
  • A. Latif, and S.A. Al-Mezel, Fixed point results in quasimetric spaces, Fixed Point Theory Appl. 2011 (2011), Article ID 178306, 8 pages.
  • J. Marín, S. Romaguera and P. Tirado, Q-functions on quasi-metric spaces and fixed points for multivalued maps, Fixed Point Theory Appl. 2011 (2011), Article ID 603861, 10 pages.
  • J. Marín, S. Romaguera and P. Tirado, Generalized contractive set-valued maps on complete preordered quasi-metric spaces, J. Funct. Spaces Appl. 2013 (2013), Article ID 269246, 6 pages.
  • S. Park, Characterizations of metric completeness, Colloquium Mathematicum 49 (1984), 21-26.
  • I.L. Reilly, P.V. Subrahmanyam and M.K. Vamanamurthy, Cauchy sequences in quasipseudo- metric spaces, Mh. Math. 93 (1982), 127-140.
  • S. Romaguera, M.P. Schellekens and O. Valero, Complexity spaces as quantitative domains of computation, Top. Appl. 158 (2011), 853-860.
  • S. Romaguera and P. Tirado, The complexity probabilistic quasi-metric space, J. Math. Anal. Appl. 376 (2011), 732-740.
  • S. Romaguera and P Tirado, A characterization of Smyth complete quasi-metric spaces via Caristi's fixed point theorem, Fixed Point Theory Appl. 2015, 2015:183.
  • S. Romaguera and O. Valero, Domain theoretic characterisations of quasi-metric completeness in terms of formal balls, Math. Struct. Comput. Sci. 20 (2010), 453-472.
  • M.P. Schellekens, A characterization of partial metrizability: domains are quantiable, Theor. Comput. Sci. 305 (2003), 409-432.
  • N. Shioji, T. Suzuki, W. Takahashi, Contractive mappings, Kannan mappings and metric completeness, Proc. Amer. Math. Soc. 126 (1998), 3117-3124.
  • P.V. Subrahmanyam, Completeness and fixed-points, Mh. Math. 80 (1975), 325-330.
  • T. Suzuki, W. Takahashi, Fixed point theorems and characterizations of metric completeness, Top. Methods Nonlinear Anal. 8 (1996), 371-382.
  • T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136 (2008), 1861-1869.
Year 2017, Volume: 46 Issue: 1, 67 - 76, 01.02.2017

Abstract

References

  • C. Alegre and J. Marín, Modified w-distances on quasi-metric spaces and a fixed point theorem on complete quasi-metric spaces, Top. Appl. 203 (2016), 32-41.
  • C. Alegre, J. Marín and S. Romaguera, A fixed point theorem for generalized contractions involving w-distances on complete quasi-metric spaces, Fixed Point Theory Appl. 2014, 2014:40.
  • S. Al-Homidan, Q.H. Ansari and J.C. Yao, Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory, Nonlinear Anal. TM&A 69 (2008), 126-139.
  • M. Ali-Akbari, B. Honari, M. Pourmahdian and M.M. Rezaii, The space of formal balls and models of quasi-metric spaces, Math. Struct. Comput. Sci. 19 (2009), 337-355.
  • I. Altun, N. Al Ari, M. Jleli, A. Lashin and B. Samet, A new concept of $(\alpha, F_d)$-contraction on quasi metric space, J. Nonlinear Sci. Appl. 9 (2016), 3354-3361.
  • J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241-251.
  • S. Cobzaş, Completeness in quasi-metric spaces and Ekeland Variational Principle, Top. Appl. 158 (2011), 1073-1084.
  • S. Cobzaş, Functional Analysis in Asymmetric Normed Spaces, Birkhäuser, Springer Basel, 2013.
  • H. Dağ, G. Minak and I. Altun, Some fixed point results for multivalued F-contractions on quasi metric spaces, RACSAM, DOI: 10.1007/s13398-016-0285-3, to appear.
  • T.K. Hu, On a fixed point theorem for metric spaces, Amer. Math. Monthly 74 (1967), 436-437.
  • R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71-76.
  • E. Karapinar and S. Romaguera, On the weak form of Ekeland's Variational Principle in quasi-metric spaces, Top. Appl. 184 (2015), 54-60.
  • A.W. Kirk, Caristi's fixed point theorem and metric convexity, Colloq. Math. 36 (1976), 81-86.
  • H.P.A. Künzi, Nonsymmetric distances and their associated topologies: About the origins of basic ideas in the area of asymmetric topology, in: C.E. Aull, R. Lowen (Eds.), Handbook of the History of General Topology, vol. 3, Kluwer, Dordrecht, 2001, pp. 853-968.
  • A. Latif, and S.A. Al-Mezel, Fixed point results in quasimetric spaces, Fixed Point Theory Appl. 2011 (2011), Article ID 178306, 8 pages.
  • J. Marín, S. Romaguera and P. Tirado, Q-functions on quasi-metric spaces and fixed points for multivalued maps, Fixed Point Theory Appl. 2011 (2011), Article ID 603861, 10 pages.
  • J. Marín, S. Romaguera and P. Tirado, Generalized contractive set-valued maps on complete preordered quasi-metric spaces, J. Funct. Spaces Appl. 2013 (2013), Article ID 269246, 6 pages.
  • S. Park, Characterizations of metric completeness, Colloquium Mathematicum 49 (1984), 21-26.
  • I.L. Reilly, P.V. Subrahmanyam and M.K. Vamanamurthy, Cauchy sequences in quasipseudo- metric spaces, Mh. Math. 93 (1982), 127-140.
  • S. Romaguera, M.P. Schellekens and O. Valero, Complexity spaces as quantitative domains of computation, Top. Appl. 158 (2011), 853-860.
  • S. Romaguera and P. Tirado, The complexity probabilistic quasi-metric space, J. Math. Anal. Appl. 376 (2011), 732-740.
  • S. Romaguera and P Tirado, A characterization of Smyth complete quasi-metric spaces via Caristi's fixed point theorem, Fixed Point Theory Appl. 2015, 2015:183.
  • S. Romaguera and O. Valero, Domain theoretic characterisations of quasi-metric completeness in terms of formal balls, Math. Struct. Comput. Sci. 20 (2010), 453-472.
  • M.P. Schellekens, A characterization of partial metrizability: domains are quantiable, Theor. Comput. Sci. 305 (2003), 409-432.
  • N. Shioji, T. Suzuki, W. Takahashi, Contractive mappings, Kannan mappings and metric completeness, Proc. Amer. Math. Soc. 126 (1998), 3117-3124.
  • P.V. Subrahmanyam, Completeness and fixed-points, Mh. Math. 80 (1975), 325-330.
  • T. Suzuki, W. Takahashi, Fixed point theorems and characterizations of metric completeness, Top. Methods Nonlinear Anal. 8 (1996), 371-382.
  • T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136 (2008), 1861-1869.
There are 28 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Carmen Alegre

Hacer Dağ This is me

Salvador Romaguera

Pedro Tirado This is me

Publication Date February 1, 2017
Published in Issue Year 2017 Volume: 46 Issue: 1

Cite

APA Alegre, C., Dağ, H., Romaguera, S., Tirado, P. (2017). Characterizations of quasi-metric completeness in terms of Kannan-type fixed point theorems. Hacettepe Journal of Mathematics and Statistics, 46(1), 67-76.
AMA Alegre C, Dağ H, Romaguera S, Tirado P. Characterizations of quasi-metric completeness in terms of Kannan-type fixed point theorems. Hacettepe Journal of Mathematics and Statistics. February 2017;46(1):67-76.
Chicago Alegre, Carmen, Hacer Dağ, Salvador Romaguera, and Pedro Tirado. “Characterizations of Quasi-Metric Completeness in Terms of Kannan-Type fixed Point Theorems”. Hacettepe Journal of Mathematics and Statistics 46, no. 1 (February 2017): 67-76.
EndNote Alegre C, Dağ H, Romaguera S, Tirado P (February 1, 2017) Characterizations of quasi-metric completeness in terms of Kannan-type fixed point theorems. Hacettepe Journal of Mathematics and Statistics 46 1 67–76.
IEEE C. Alegre, H. Dağ, S. Romaguera, and P. Tirado, “Characterizations of quasi-metric completeness in terms of Kannan-type fixed point theorems”, Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 1, pp. 67–76, 2017.
ISNAD Alegre, Carmen et al. “Characterizations of Quasi-Metric Completeness in Terms of Kannan-Type fixed Point Theorems”. Hacettepe Journal of Mathematics and Statistics 46/1 (February 2017), 67-76.
JAMA Alegre C, Dağ H, Romaguera S, Tirado P. Characterizations of quasi-metric completeness in terms of Kannan-type fixed point theorems. Hacettepe Journal of Mathematics and Statistics. 2017;46:67–76.
MLA Alegre, Carmen et al. “Characterizations of Quasi-Metric Completeness in Terms of Kannan-Type fixed Point Theorems”. Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 1, 2017, pp. 67-76.
Vancouver Alegre C, Dağ H, Romaguera S, Tirado P. Characterizations of quasi-metric completeness in terms of Kannan-type fixed point theorems. Hacettepe Journal of Mathematics and Statistics. 2017;46(1):67-76.