Characterizations of quasi-metric completeness in terms of Kannan-type fixed point theorems
Year 2017,
Volume: 46 Issue: 1, 67 - 76, 01.02.2017
Carmen Alegre
,
Hacer Dağ
Salvador Romaguera
,
Pedro Tirado
Abstract
We obtain quasi-metric versions of Kannan's fixed point theorem for self-mappings and multivalued mappings, respectively, which are used to deduce characterizations of d-sequentially complete and of left K-sequentially complete quasi-metric spaces, respectively.
References
- C. Alegre and J. Marín, Modified w-distances on quasi-metric spaces and a fixed point
theorem on complete quasi-metric spaces, Top. Appl. 203 (2016), 32-41.
- C. Alegre, J. Marín and S. Romaguera, A fixed point theorem for generalized contractions
involving w-distances on complete quasi-metric spaces, Fixed Point Theory Appl. 2014,
2014:40.
- S. Al-Homidan, Q.H. Ansari and J.C. Yao, Some generalizations of Ekeland-type variational
principle with applications to equilibrium problems and fixed point theory, Nonlinear Anal.
TM&A 69 (2008), 126-139.
- M. Ali-Akbari, B. Honari, M. Pourmahdian and M.M. Rezaii, The space of formal balls and
models of quasi-metric spaces, Math. Struct. Comput. Sci. 19 (2009), 337-355.
- I. Altun, N. Al Ari, M. Jleli, A. Lashin and B. Samet, A new concept of $(\alpha, F_d)$-contraction
on quasi metric space, J. Nonlinear Sci. Appl. 9 (2016), 3354-3361.
- J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer.
Math. Soc. 215 (1976), 241-251.
- S. Cobzaş, Completeness in quasi-metric spaces and Ekeland Variational Principle, Top.
Appl. 158 (2011), 1073-1084.
- S. Cobzaş, Functional Analysis in Asymmetric Normed Spaces, Birkhäuser, Springer Basel,
2013.
- H. Dağ, G. Minak and I. Altun, Some fixed point results for multivalued F-contractions on
quasi metric spaces, RACSAM, DOI: 10.1007/s13398-016-0285-3, to appear.
- T.K. Hu, On a fixed point theorem for metric spaces, Amer. Math. Monthly 74 (1967),
436-437.
- R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71-76.
- E. Karapinar and S. Romaguera, On the weak form of Ekeland's Variational Principle in
quasi-metric spaces, Top. Appl. 184 (2015), 54-60.
- A.W. Kirk, Caristi's fixed point theorem and metric convexity, Colloq. Math. 36 (1976),
81-86.
- H.P.A. Künzi, Nonsymmetric distances and their associated topologies: About the origins
of basic ideas in the area of asymmetric topology, in: C.E. Aull, R. Lowen (Eds.), Handbook
of the History of General Topology, vol. 3, Kluwer, Dordrecht, 2001, pp. 853-968.
- A. Latif, and S.A. Al-Mezel, Fixed point results in quasimetric spaces, Fixed Point Theory
Appl. 2011 (2011), Article ID 178306, 8 pages.
- J. Marín, S. Romaguera and P. Tirado, Q-functions on quasi-metric spaces and fixed points
for multivalued maps, Fixed Point Theory Appl. 2011 (2011), Article ID 603861, 10 pages.
- J. Marín, S. Romaguera and P. Tirado, Generalized contractive set-valued maps on complete
preordered quasi-metric spaces, J. Funct. Spaces Appl. 2013 (2013), Article ID 269246, 6
pages.
- S. Park, Characterizations of metric completeness, Colloquium Mathematicum 49 (1984),
21-26.
- I.L. Reilly, P.V. Subrahmanyam and M.K. Vamanamurthy, Cauchy sequences in quasipseudo-
metric spaces, Mh. Math. 93 (1982), 127-140.
- S. Romaguera, M.P. Schellekens and O. Valero, Complexity spaces as quantitative domains
of computation, Top. Appl. 158 (2011), 853-860.
- S. Romaguera and P. Tirado, The complexity probabilistic quasi-metric space, J. Math.
Anal. Appl. 376 (2011), 732-740.
- S. Romaguera and P Tirado, A characterization of Smyth complete quasi-metric spaces via
Caristi's fixed point theorem, Fixed Point Theory Appl. 2015, 2015:183.
- S. Romaguera and O. Valero, Domain theoretic characterisations of quasi-metric completeness
in terms of formal balls, Math. Struct. Comput. Sci. 20 (2010), 453-472.
- M.P. Schellekens, A characterization of partial metrizability: domains are quantiable,
Theor. Comput. Sci. 305 (2003), 409-432.
- N. Shioji, T. Suzuki, W. Takahashi, Contractive mappings, Kannan mappings and metric
completeness, Proc. Amer. Math. Soc. 126 (1998), 3117-3124.
- P.V. Subrahmanyam, Completeness and fixed-points, Mh. Math. 80 (1975), 325-330.
- T. Suzuki, W. Takahashi, Fixed point theorems and characterizations of metric completeness,
Top. Methods Nonlinear Anal. 8 (1996), 371-382.
- T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness,
Proc. Amer. Math. Soc., 136 (2008), 1861-1869.
Year 2017,
Volume: 46 Issue: 1, 67 - 76, 01.02.2017
Carmen Alegre
,
Hacer Dağ
Salvador Romaguera
,
Pedro Tirado
References
- C. Alegre and J. Marín, Modified w-distances on quasi-metric spaces and a fixed point
theorem on complete quasi-metric spaces, Top. Appl. 203 (2016), 32-41.
- C. Alegre, J. Marín and S. Romaguera, A fixed point theorem for generalized contractions
involving w-distances on complete quasi-metric spaces, Fixed Point Theory Appl. 2014,
2014:40.
- S. Al-Homidan, Q.H. Ansari and J.C. Yao, Some generalizations of Ekeland-type variational
principle with applications to equilibrium problems and fixed point theory, Nonlinear Anal.
TM&A 69 (2008), 126-139.
- M. Ali-Akbari, B. Honari, M. Pourmahdian and M.M. Rezaii, The space of formal balls and
models of quasi-metric spaces, Math. Struct. Comput. Sci. 19 (2009), 337-355.
- I. Altun, N. Al Ari, M. Jleli, A. Lashin and B. Samet, A new concept of $(\alpha, F_d)$-contraction
on quasi metric space, J. Nonlinear Sci. Appl. 9 (2016), 3354-3361.
- J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer.
Math. Soc. 215 (1976), 241-251.
- S. Cobzaş, Completeness in quasi-metric spaces and Ekeland Variational Principle, Top.
Appl. 158 (2011), 1073-1084.
- S. Cobzaş, Functional Analysis in Asymmetric Normed Spaces, Birkhäuser, Springer Basel,
2013.
- H. Dağ, G. Minak and I. Altun, Some fixed point results for multivalued F-contractions on
quasi metric spaces, RACSAM, DOI: 10.1007/s13398-016-0285-3, to appear.
- T.K. Hu, On a fixed point theorem for metric spaces, Amer. Math. Monthly 74 (1967),
436-437.
- R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71-76.
- E. Karapinar and S. Romaguera, On the weak form of Ekeland's Variational Principle in
quasi-metric spaces, Top. Appl. 184 (2015), 54-60.
- A.W. Kirk, Caristi's fixed point theorem and metric convexity, Colloq. Math. 36 (1976),
81-86.
- H.P.A. Künzi, Nonsymmetric distances and their associated topologies: About the origins
of basic ideas in the area of asymmetric topology, in: C.E. Aull, R. Lowen (Eds.), Handbook
of the History of General Topology, vol. 3, Kluwer, Dordrecht, 2001, pp. 853-968.
- A. Latif, and S.A. Al-Mezel, Fixed point results in quasimetric spaces, Fixed Point Theory
Appl. 2011 (2011), Article ID 178306, 8 pages.
- J. Marín, S. Romaguera and P. Tirado, Q-functions on quasi-metric spaces and fixed points
for multivalued maps, Fixed Point Theory Appl. 2011 (2011), Article ID 603861, 10 pages.
- J. Marín, S. Romaguera and P. Tirado, Generalized contractive set-valued maps on complete
preordered quasi-metric spaces, J. Funct. Spaces Appl. 2013 (2013), Article ID 269246, 6
pages.
- S. Park, Characterizations of metric completeness, Colloquium Mathematicum 49 (1984),
21-26.
- I.L. Reilly, P.V. Subrahmanyam and M.K. Vamanamurthy, Cauchy sequences in quasipseudo-
metric spaces, Mh. Math. 93 (1982), 127-140.
- S. Romaguera, M.P. Schellekens and O. Valero, Complexity spaces as quantitative domains
of computation, Top. Appl. 158 (2011), 853-860.
- S. Romaguera and P. Tirado, The complexity probabilistic quasi-metric space, J. Math.
Anal. Appl. 376 (2011), 732-740.
- S. Romaguera and P Tirado, A characterization of Smyth complete quasi-metric spaces via
Caristi's fixed point theorem, Fixed Point Theory Appl. 2015, 2015:183.
- S. Romaguera and O. Valero, Domain theoretic characterisations of quasi-metric completeness
in terms of formal balls, Math. Struct. Comput. Sci. 20 (2010), 453-472.
- M.P. Schellekens, A characterization of partial metrizability: domains are quantiable,
Theor. Comput. Sci. 305 (2003), 409-432.
- N. Shioji, T. Suzuki, W. Takahashi, Contractive mappings, Kannan mappings and metric
completeness, Proc. Amer. Math. Soc. 126 (1998), 3117-3124.
- P.V. Subrahmanyam, Completeness and fixed-points, Mh. Math. 80 (1975), 325-330.
- T. Suzuki, W. Takahashi, Fixed point theorems and characterizations of metric completeness,
Top. Methods Nonlinear Anal. 8 (1996), 371-382.
- T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness,
Proc. Amer. Math. Soc., 136 (2008), 1861-1869.