Ideal convergence in 2-fuzzy 2-normed spaces
Year 2017,
Volume: 46 Issue: 1, 149 - 162, 01.02.2017
Mohammad H.m. Rashid
,
Ljubi\v{s}a D.r. Ko\v{c}inac
Abstract
In this paper we introduce the notion of $\mathcal{I}$-convergence and $\mathcal{I}$-Cauchyness of sequences in 2-fuzzy 2-normed spaces and established some basic results related to these notions. Further, we define $\mathcal{I}$-limit and $\mathcal{I}$-cluster points of a sequence in a 2-fuzzy 2-normed linear space and investigate the relations between these concepts.
References
- S. Aytar, Statistical limit points of sequences of fuzzy numbers, Inform. Sci. 165 (2004),
129138.
- S. Aytar, M. Mammadov, S. Pehlivan, Statistical limit inferior and limit superior for sequences
of fuzzy numbers, Fuzzy Sets Syst. 157:7 (2006), 976985.
- S. Aytar, S. Pehlivan, Statistical cluster and extreme limit points of sequences of fuzzy
numbers, Inform. Sci. 177 (2007), 32903296.
- T. Bag, S.K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11:3
(2003), 687705.
- T. Bag, S.K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets Syst. 151:3 (2005),
513547.
- T. Bag, S.K. Samanta, A comparative study of fuzzy norms on a linear space, Fuzzy Sets
Syst. 159 (2008), 670684.
- M. Balcerzak, K. Dems, A. Komisarski, Statistical convergence and ideal convergence for
sequences of functions, J. Math. Anal. Appl. 328 (2007), 715729.
- A.I. Bernstein, A new kind of compactness for topological spaces, Fund. Math. 66 (1970),
185193.
- H. Çakalli, S. Ersan, Strongly lacunary ward continuity in 2-normed spaces, Sci. World J.
2014 (2014), Art. ID 479679, 5 pp.
- H. Çakalli, S. Ersan, New types of continuity in 2-normed spaces, Filomat 30:3 (2016),
525532.
- A. Caserta, G. Di Maio, Lj.D.R. Kocinac, Statistical convergence in function spaces, Abstr.
Appl. Anal. 2011 (2011), Article ID 420419, 11 pages.
- S.C. Cheng, J.N. Mordeson, Fuzzy linear operators and fuzzy normed linear spaces, Bull.
Cal. Math. Soc 86 (1994), 429436.
- P. Das, S.K. Ghosal, Some further results on I-Cauchy sequences and condition (AP), Comput.
Math. Appl. 59 (2010), 25972600.
- P. Das, S. Pal, S.K. Ghosal, Further investigations of ideal summability in 2-normed spaces,
Appl. Math. Letters 24 (2011), 3943.
- P. Das, E. Savaş, On I-statistically pre-Cauchy sequences, Taiwanese J. Math. 18:1 (2014),
115126.
- K. Dems, On I-Cauchy sequences, Real Anal. Exch. 30:1 (2004-2005), 123128.
- G. Di Maio, Lj.D.R. Kocinac, Statistical convergence in topology, Topology Appl. 156:1
(2008), 2845.
- S. Ersan, H. Çakalli, Ward continuity in 2-normed spaces, Filomat 29:7 (2015), 15071513.
- S. Gähler, 2-metrishe Räume und ihr topologishe struktur, Math. Nachr. 26 (1963), 115148.
- H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241244.
- C. Felbin, Finite dimensional fuzzy normed linear spaces, Fuzzy Sets Syst. 48 (1992), 239
248.
- J.A. Fridy, On statistical convergence, Analysis 5 (1985), 301313.
- B. Hazarika, On ideal convergent sequences in fuzzy normed linear spaces, Afrika Matematika
25:4 (2014), 987999.
- B. Hazarika, E. Savaş, Some I-convergent lamda-summable difference sequence spaces of
fuzzy real numbers dened by a sequence of Orlicz, Math. Comp. Modelling 54 (2011),
29862998.
- O. Kaleva, S. Seikkala, On fuzzy metric spaces, Fuzzy Sets Syst. 12 (1984), 215229.
- S. Karakuş, K. Demirci, O. Duman, Statistical convergence on intuitionistic fuzzy normed
spaces, Chaos, Solitons and Fractals 35 (2008), 763769.
- V. Karakaya, N.N. Şimşek , M. Ertürk, F. Gürsoy, Statistical A-convergence of sequences
of functions in intuitionistic fuzzy normed spaces, Abstr. Appl. Anal. 2012 (2012).
- V. Karakaya, N.N. Şimşek , M. Ertürk, F. Gürsoy, On ideal convergence of sequences of
functions in intuitionistic fuzzy normed spaces, Appl. Math. Inf. Sci. 8:5 (2014), 23072313.
- A.K. Katsaras, Fuzzy topological vector spaces, Fuzzy Sets Syst. 12 (1984), 143154.
- P. Kostyrko, T. Salát, W. Wilczynski, I-convergence, Real Anal. Exchange, 26:2 (2000-2001),
669686.
- P. Kostyrko, M. Macaj, T. Salát, M. Sleziak, I-convergence and extremal I-limit points,
Math. Slovaca 55 (2005), 443464.
- A.K. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11
(1975), 326334.
- V. Kumar, K Kumar, On the ideal convergence of sequences of fuzzy numbers, Inform. Sci.
178 (2008), 46704678.
- M. Mursaleen, S.A. Mohiuddine, Statistical convergence of double sequences in intuitionistic
fuzzy normed spaces, Chaos Solitons and Fractals 41 (2009), 24142421.
- A. Nabin, S. Pehlivan, M. Gürdal, On I-Cauchy sequences, Taiwanese J. Math. 11:2 (2007),
569576.
- F. Nuray, E. Savaş, Statistical convergence of sequences of fuzzy numbers, Math. Slovaca
45 (1995), 269273.
- W. Raymond, Y. Freese, J. Cho, Geometry of linear 2-normed spaces, N.Y. Nova Science
Publishers, Huntington, 2001.
- E. Savaş, On statistically convergent sequence of fuzzy numbers, Inform. Sci. 137 (2001),
272282.
- E. Savaş, On some new sequence spaces in 2-normed spaces using ideal convergence and an
Orlicz function, J. Inequal. Appl. 2010 (2010), Art. ID 482392, 8 pp.
- E. Savaş, Some I-convergent sequence spaces of fuzzy numbers dened by innite matrix,
Math. Comp. Appl. 18:2 (2013), 8493.
- C. Şençimen, S. Pehlivan, Statistical convergence in fuzzy normed linear spaces, Fuzzy Sets
Syst. 159 (2008), 361370.
- H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math.
2 (1951), 7334.
- R.M. Somasundaram, T. Beaula, Some aspects of 2-fuzzy 2-normed linear spaces, Bull.
Malays. Math. Sci. Soc. (2) 32:2 (2009), 211221.
- L.A. Zadeh, Fuzzy Sets, Inform. Control 8 (1965), 338353.
- J. Zhang, The continuity and boundedness of fuzzy linear operators in fuzzy normed space,
J. Fuzzy Math. 13:3 (2005), 519536.
- A. Zygmund, Trigonometric Series, 2nd edition, Cambridge University Press, Cambridge,
1979.
Year 2017,
Volume: 46 Issue: 1, 149 - 162, 01.02.2017
Mohammad H.m. Rashid
,
Ljubi\v{s}a D.r. Ko\v{c}inac
References
- S. Aytar, Statistical limit points of sequences of fuzzy numbers, Inform. Sci. 165 (2004),
129138.
- S. Aytar, M. Mammadov, S. Pehlivan, Statistical limit inferior and limit superior for sequences
of fuzzy numbers, Fuzzy Sets Syst. 157:7 (2006), 976985.
- S. Aytar, S. Pehlivan, Statistical cluster and extreme limit points of sequences of fuzzy
numbers, Inform. Sci. 177 (2007), 32903296.
- T. Bag, S.K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11:3
(2003), 687705.
- T. Bag, S.K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets Syst. 151:3 (2005),
513547.
- T. Bag, S.K. Samanta, A comparative study of fuzzy norms on a linear space, Fuzzy Sets
Syst. 159 (2008), 670684.
- M. Balcerzak, K. Dems, A. Komisarski, Statistical convergence and ideal convergence for
sequences of functions, J. Math. Anal. Appl. 328 (2007), 715729.
- A.I. Bernstein, A new kind of compactness for topological spaces, Fund. Math. 66 (1970),
185193.
- H. Çakalli, S. Ersan, Strongly lacunary ward continuity in 2-normed spaces, Sci. World J.
2014 (2014), Art. ID 479679, 5 pp.
- H. Çakalli, S. Ersan, New types of continuity in 2-normed spaces, Filomat 30:3 (2016),
525532.
- A. Caserta, G. Di Maio, Lj.D.R. Kocinac, Statistical convergence in function spaces, Abstr.
Appl. Anal. 2011 (2011), Article ID 420419, 11 pages.
- S.C. Cheng, J.N. Mordeson, Fuzzy linear operators and fuzzy normed linear spaces, Bull.
Cal. Math. Soc 86 (1994), 429436.
- P. Das, S.K. Ghosal, Some further results on I-Cauchy sequences and condition (AP), Comput.
Math. Appl. 59 (2010), 25972600.
- P. Das, S. Pal, S.K. Ghosal, Further investigations of ideal summability in 2-normed spaces,
Appl. Math. Letters 24 (2011), 3943.
- P. Das, E. Savaş, On I-statistically pre-Cauchy sequences, Taiwanese J. Math. 18:1 (2014),
115126.
- K. Dems, On I-Cauchy sequences, Real Anal. Exch. 30:1 (2004-2005), 123128.
- G. Di Maio, Lj.D.R. Kocinac, Statistical convergence in topology, Topology Appl. 156:1
(2008), 2845.
- S. Ersan, H. Çakalli, Ward continuity in 2-normed spaces, Filomat 29:7 (2015), 15071513.
- S. Gähler, 2-metrishe Räume und ihr topologishe struktur, Math. Nachr. 26 (1963), 115148.
- H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241244.
- C. Felbin, Finite dimensional fuzzy normed linear spaces, Fuzzy Sets Syst. 48 (1992), 239
248.
- J.A. Fridy, On statistical convergence, Analysis 5 (1985), 301313.
- B. Hazarika, On ideal convergent sequences in fuzzy normed linear spaces, Afrika Matematika
25:4 (2014), 987999.
- B. Hazarika, E. Savaş, Some I-convergent lamda-summable difference sequence spaces of
fuzzy real numbers dened by a sequence of Orlicz, Math. Comp. Modelling 54 (2011),
29862998.
- O. Kaleva, S. Seikkala, On fuzzy metric spaces, Fuzzy Sets Syst. 12 (1984), 215229.
- S. Karakuş, K. Demirci, O. Duman, Statistical convergence on intuitionistic fuzzy normed
spaces, Chaos, Solitons and Fractals 35 (2008), 763769.
- V. Karakaya, N.N. Şimşek , M. Ertürk, F. Gürsoy, Statistical A-convergence of sequences
of functions in intuitionistic fuzzy normed spaces, Abstr. Appl. Anal. 2012 (2012).
- V. Karakaya, N.N. Şimşek , M. Ertürk, F. Gürsoy, On ideal convergence of sequences of
functions in intuitionistic fuzzy normed spaces, Appl. Math. Inf. Sci. 8:5 (2014), 23072313.
- A.K. Katsaras, Fuzzy topological vector spaces, Fuzzy Sets Syst. 12 (1984), 143154.
- P. Kostyrko, T. Salát, W. Wilczynski, I-convergence, Real Anal. Exchange, 26:2 (2000-2001),
669686.
- P. Kostyrko, M. Macaj, T. Salát, M. Sleziak, I-convergence and extremal I-limit points,
Math. Slovaca 55 (2005), 443464.
- A.K. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11
(1975), 326334.
- V. Kumar, K Kumar, On the ideal convergence of sequences of fuzzy numbers, Inform. Sci.
178 (2008), 46704678.
- M. Mursaleen, S.A. Mohiuddine, Statistical convergence of double sequences in intuitionistic
fuzzy normed spaces, Chaos Solitons and Fractals 41 (2009), 24142421.
- A. Nabin, S. Pehlivan, M. Gürdal, On I-Cauchy sequences, Taiwanese J. Math. 11:2 (2007),
569576.
- F. Nuray, E. Savaş, Statistical convergence of sequences of fuzzy numbers, Math. Slovaca
45 (1995), 269273.
- W. Raymond, Y. Freese, J. Cho, Geometry of linear 2-normed spaces, N.Y. Nova Science
Publishers, Huntington, 2001.
- E. Savaş, On statistically convergent sequence of fuzzy numbers, Inform. Sci. 137 (2001),
272282.
- E. Savaş, On some new sequence spaces in 2-normed spaces using ideal convergence and an
Orlicz function, J. Inequal. Appl. 2010 (2010), Art. ID 482392, 8 pp.
- E. Savaş, Some I-convergent sequence spaces of fuzzy numbers dened by innite matrix,
Math. Comp. Appl. 18:2 (2013), 8493.
- C. Şençimen, S. Pehlivan, Statistical convergence in fuzzy normed linear spaces, Fuzzy Sets
Syst. 159 (2008), 361370.
- H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math.
2 (1951), 7334.
- R.M. Somasundaram, T. Beaula, Some aspects of 2-fuzzy 2-normed linear spaces, Bull.
Malays. Math. Sci. Soc. (2) 32:2 (2009), 211221.
- L.A. Zadeh, Fuzzy Sets, Inform. Control 8 (1965), 338353.
- J. Zhang, The continuity and boundedness of fuzzy linear operators in fuzzy normed space,
J. Fuzzy Math. 13:3 (2005), 519536.
- A. Zygmund, Trigonometric Series, 2nd edition, Cambridge University Press, Cambridge,
1979.