Research Article
BibTex RIS Cite

Existence and regularization of the local times of a Gaussian process

Year 2018, Volume: 47 Issue: 5, 1206 - 1215, 16.10.2018

Abstract

We study an existence result in the mean square sense of the local times of a one-dimensional Gaussian process defined by an indefinite Wiener integral. For any spatial dimension, we prove that the local times of a Gaussian process, after appropriatelly renormalized, exist as White noise distributions. We also present a regularization of the local times and show a convergence result in Hida distributions space.

References

  • Bock, W., da Silva, J.L. and Suryawan, H.P. Local times for multifractional Brownian mo- tion in higher dimensions: a white noise approach, Infin. Dimens. Anal., Quantum Probab. Relat. Top. 19(4), Article ID 1650026, 16 pp, 2016.
  • Bock, W., Oliveira, M.J., da Silva, J.L. and Streit, L. Polymer measure: Varadhan's renormalization revisited, Rev. Math. Phys. 27(3), Article ID 1550009, 5 pp, 2016.
  • da Faria, M., Hida, T., Streit, L. and Watanabe, H. Intersection local times as generalized white noise functionals, Acta Appl. Math. 46, 351-362, 1997.
  • Drumond, C., Oliveira, M.J. and da Silva, J.L. Intersection local times of fractional Brownian motions with $H\in (0,1)$ as generalized white noise functionals, Stochastic and Quantum Dynamics of Biomolecular Systems. AIP Conference Proceedings, 34-45, 2008.
  • Grothaus, M., Riemann, F. and Suryawan, H.P. A white noise approach to the Feynman integrand for electrons in random media, J. Math. Phys.55, Article ID 913507, 16 pp, 2014.
  • Hida, T., Kuo, H.-H., Potthoff, J. and Streit, L. White Noise. An Infinite Dimensional Calculus (Kluwer Academic Publishers, Dordrecht, 1993).
  • Suryawan, H.P. A white noise approach to the self-intersection local times of a Gaussian process, J. Indonesian Math. Soc. 20, 111-124, 2014.
  • Suryawan, H.P. Gaussian white noise analysis and its application to Feynman path integral, AIP Conference Proceedings 1707, Article ID 030001, 10 pp, 2016.
  • Kondratiev, Y., Leukert, P. and Streit, L. Wick calculus in Gaussian analysis, Acta Appl. Math. 44, 269-294, 1996.
  • Kondratiev, Y., Leukert, P., Pottho_, J., Streit, L. and Westerkamp, W. Generalized functionals in Gaussian spaces: The characterization theorem revisited, J. Funct. Anal. 141, 301-318, 1996.
  • Kuo, H.-H. White Noise Distribution Theory (CRC Press, Boca Raton, 1996).
  • Watanabe, H. The local time of self-intersections of Brownian motions as generalized Brownian functionals, Lett. Math. Phys. 23, 1-9, 1991.
Year 2018, Volume: 47 Issue: 5, 1206 - 1215, 16.10.2018

Abstract

References

  • Bock, W., da Silva, J.L. and Suryawan, H.P. Local times for multifractional Brownian mo- tion in higher dimensions: a white noise approach, Infin. Dimens. Anal., Quantum Probab. Relat. Top. 19(4), Article ID 1650026, 16 pp, 2016.
  • Bock, W., Oliveira, M.J., da Silva, J.L. and Streit, L. Polymer measure: Varadhan's renormalization revisited, Rev. Math. Phys. 27(3), Article ID 1550009, 5 pp, 2016.
  • da Faria, M., Hida, T., Streit, L. and Watanabe, H. Intersection local times as generalized white noise functionals, Acta Appl. Math. 46, 351-362, 1997.
  • Drumond, C., Oliveira, M.J. and da Silva, J.L. Intersection local times of fractional Brownian motions with $H\in (0,1)$ as generalized white noise functionals, Stochastic and Quantum Dynamics of Biomolecular Systems. AIP Conference Proceedings, 34-45, 2008.
  • Grothaus, M., Riemann, F. and Suryawan, H.P. A white noise approach to the Feynman integrand for electrons in random media, J. Math. Phys.55, Article ID 913507, 16 pp, 2014.
  • Hida, T., Kuo, H.-H., Potthoff, J. and Streit, L. White Noise. An Infinite Dimensional Calculus (Kluwer Academic Publishers, Dordrecht, 1993).
  • Suryawan, H.P. A white noise approach to the self-intersection local times of a Gaussian process, J. Indonesian Math. Soc. 20, 111-124, 2014.
  • Suryawan, H.P. Gaussian white noise analysis and its application to Feynman path integral, AIP Conference Proceedings 1707, Article ID 030001, 10 pp, 2016.
  • Kondratiev, Y., Leukert, P. and Streit, L. Wick calculus in Gaussian analysis, Acta Appl. Math. 44, 269-294, 1996.
  • Kondratiev, Y., Leukert, P., Pottho_, J., Streit, L. and Westerkamp, W. Generalized functionals in Gaussian spaces: The characterization theorem revisited, J. Funct. Anal. 141, 301-318, 1996.
  • Kuo, H.-H. White Noise Distribution Theory (CRC Press, Boca Raton, 1996).
  • Watanabe, H. The local time of self-intersections of Brownian motions as generalized Brownian functionals, Lett. Math. Phys. 23, 1-9, 1991.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Herry Pribawanto Suryawan This is me

Publication Date October 16, 2018
Published in Issue Year 2018 Volume: 47 Issue: 5

Cite

APA Suryawan, H. P. (2018). Existence and regularization of the local times of a Gaussian process. Hacettepe Journal of Mathematics and Statistics, 47(5), 1206-1215.
AMA Suryawan HP. Existence and regularization of the local times of a Gaussian process. Hacettepe Journal of Mathematics and Statistics. October 2018;47(5):1206-1215.
Chicago Suryawan, Herry Pribawanto. “Existence and Regularization of the Local Times of a Gaussian Process”. Hacettepe Journal of Mathematics and Statistics 47, no. 5 (October 2018): 1206-15.
EndNote Suryawan HP (October 1, 2018) Existence and regularization of the local times of a Gaussian process. Hacettepe Journal of Mathematics and Statistics 47 5 1206–1215.
IEEE H. P. Suryawan, “Existence and regularization of the local times of a Gaussian process”, Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 5, pp. 1206–1215, 2018.
ISNAD Suryawan, Herry Pribawanto. “Existence and Regularization of the Local Times of a Gaussian Process”. Hacettepe Journal of Mathematics and Statistics 47/5 (October 2018), 1206-1215.
JAMA Suryawan HP. Existence and regularization of the local times of a Gaussian process. Hacettepe Journal of Mathematics and Statistics. 2018;47:1206–1215.
MLA Suryawan, Herry Pribawanto. “Existence and Regularization of the Local Times of a Gaussian Process”. Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 5, 2018, pp. 1206-15.
Vancouver Suryawan HP. Existence and regularization of the local times of a Gaussian process. Hacettepe Journal of Mathematics and Statistics. 2018;47(5):1206-15.