Research Article
BibTex RIS Cite
Year 2018, Volume: 47 Issue: 6, 1417 - 1426, 12.12.2018

Abstract

References

  • Alizade, R., Bilhan, G., and Smith, P. F. Modules whose maximal submodules have supplements. Communications in Algebra, 29(6):2389-2405, 2001.
  • Anderson, F. and Fuller, K. Rings and Categories of Modules. Springer, 1992.
  • Büyükaşık, E. and Lomp, C. Rings whose modules are weakly supplemented are perfect. applications to certain ring extensions. Mathematica Scandinavica, 105:25-30, 2009.
  • Çalışıcı, H. and Pancar, A. $\oplus$-cofinitely supplemented modules. Czechoslovak Mathematical Journal, 54(129):1083-1088, 2004.
  • Clark, J., Lomp, C., Vanaja, N., and Wisbauer, R. Lifting Modules. Birkhäuser Verlag, 2006.
  • Fuchs, L. Infinite Abelian Groups, Vol. I. New York: Academic Press, 1970.
  • Idelhadj, A. and Tribak, R. A dual notion of cs-modules generalization. Algebra and Number Theory, Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York, 208:149155, 2000.
  • Idelhadj, A. and Tribak, R. On some properties of $\oplus$-supplemented modules. International Journal of Mathematics and Mathematical Sciences, 69:4373-4387, 2003.
  • Kasch, F. Modules and Rings. London Mathematical Society, 1982.
  • Keskin, D., Harmancı, A., and Smith, P. F. On $\oplus$-supplemented modules. Acta Mathematica Hungaria, 83(1-2):161-169, 1999.
  • Keskin, D., Smith, P. F., and Xue, W. Rings whose modules are $\oplus$-supplemented. Journal of Algebra, 218:470-487, 1999.
  • Mohamed, S. H. and Müller, B. J. Continuous and Discrete Modules. London Mathematical Society Lecture Notes Series, Cambridge Univ. Press, Cambridge, UK, 1990.
  • Wang, Y. and Sun, Q. A note on $\oplus$-cofinitely supplemented modules. International Journal of Mathematics and Mathematical Sciences, 2007:108-365 pages, 2007.
  • Warfield Jr., R. B. Decomposability of finitely presented modules. Proceedings of the American Mathematical Society, 25(1):167172, 1970.
  • Wisbauer, R. Foundations of Modules and Rings. Gordon and Breach, 1991.
  • Zöschinger, H. Komplementierte moduln über dedekindringen. Journal of Algebra, 29:42-56, 1974.
  • Zöschinger, H. Moduln die in jeder erweiterung ein komplement haben. Mathematica Scandinavica, 35:267-287, 1974.
  • Zöschinger, H. and Rosenberg, F. A. Koatomare moduln. Mathematische Zeitschrift, 170(3):221-232, 1980.

$\oplus$-co-coatomically supplemented and co-coatomically semiperfect modules

Year 2018, Volume: 47 Issue: 6, 1417 - 1426, 12.12.2018

Abstract

In  this paper it is shown that a factor module of an $\oplus$-co-coatomically supplemented module is not in general $\oplus$-co-coatomically supplemented. If $M$ is $\oplus$-co-coatomically supplemented and $U$ is a fully invariant submodule of $M$, then $M/U$ is $\oplus$-co-coatomically supplemented. A ring $R$ is left perfect if and only if $R^{(\mathbb{N})}$ is an $\oplus$-co-coatomically supplemented $R$-module. A projective module $M$ is co-coatomically semiperfect if and only if $M$ is $\oplus$-co-coatomically supplemented. A ring is semiperfect if and only if every finitely generated free $R$-module is co-coatomically semiperfect.

References

  • Alizade, R., Bilhan, G., and Smith, P. F. Modules whose maximal submodules have supplements. Communications in Algebra, 29(6):2389-2405, 2001.
  • Anderson, F. and Fuller, K. Rings and Categories of Modules. Springer, 1992.
  • Büyükaşık, E. and Lomp, C. Rings whose modules are weakly supplemented are perfect. applications to certain ring extensions. Mathematica Scandinavica, 105:25-30, 2009.
  • Çalışıcı, H. and Pancar, A. $\oplus$-cofinitely supplemented modules. Czechoslovak Mathematical Journal, 54(129):1083-1088, 2004.
  • Clark, J., Lomp, C., Vanaja, N., and Wisbauer, R. Lifting Modules. Birkhäuser Verlag, 2006.
  • Fuchs, L. Infinite Abelian Groups, Vol. I. New York: Academic Press, 1970.
  • Idelhadj, A. and Tribak, R. A dual notion of cs-modules generalization. Algebra and Number Theory, Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York, 208:149155, 2000.
  • Idelhadj, A. and Tribak, R. On some properties of $\oplus$-supplemented modules. International Journal of Mathematics and Mathematical Sciences, 69:4373-4387, 2003.
  • Kasch, F. Modules and Rings. London Mathematical Society, 1982.
  • Keskin, D., Harmancı, A., and Smith, P. F. On $\oplus$-supplemented modules. Acta Mathematica Hungaria, 83(1-2):161-169, 1999.
  • Keskin, D., Smith, P. F., and Xue, W. Rings whose modules are $\oplus$-supplemented. Journal of Algebra, 218:470-487, 1999.
  • Mohamed, S. H. and Müller, B. J. Continuous and Discrete Modules. London Mathematical Society Lecture Notes Series, Cambridge Univ. Press, Cambridge, UK, 1990.
  • Wang, Y. and Sun, Q. A note on $\oplus$-cofinitely supplemented modules. International Journal of Mathematics and Mathematical Sciences, 2007:108-365 pages, 2007.
  • Warfield Jr., R. B. Decomposability of finitely presented modules. Proceedings of the American Mathematical Society, 25(1):167172, 1970.
  • Wisbauer, R. Foundations of Modules and Rings. Gordon and Breach, 1991.
  • Zöschinger, H. Komplementierte moduln über dedekindringen. Journal of Algebra, 29:42-56, 1974.
  • Zöschinger, H. Moduln die in jeder erweiterung ein komplement haben. Mathematica Scandinavica, 35:267-287, 1974.
  • Zöschinger, H. and Rosenberg, F. A. Koatomare moduln. Mathematische Zeitschrift, 170(3):221-232, 1980.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Rafail Alizade

Serpil Güngör This is me

Publication Date December 12, 2018
Published in Issue Year 2018 Volume: 47 Issue: 6

Cite

APA Alizade, R., & Güngör, S. (2018). $\oplus$-co-coatomically supplemented and co-coatomically semiperfect modules. Hacettepe Journal of Mathematics and Statistics, 47(6), 1417-1426.
AMA Alizade R, Güngör S. $\oplus$-co-coatomically supplemented and co-coatomically semiperfect modules. Hacettepe Journal of Mathematics and Statistics. December 2018;47(6):1417-1426.
Chicago Alizade, Rafail, and Serpil Güngör. “$\oplus$-Co-Coatomically Supplemented and Co-Coatomically Semiperfect Modules”. Hacettepe Journal of Mathematics and Statistics 47, no. 6 (December 2018): 1417-26.
EndNote Alizade R, Güngör S (December 1, 2018) $\oplus$-co-coatomically supplemented and co-coatomically semiperfect modules. Hacettepe Journal of Mathematics and Statistics 47 6 1417–1426.
IEEE R. Alizade and S. Güngör, “$\oplus$-co-coatomically supplemented and co-coatomically semiperfect modules”, Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 6, pp. 1417–1426, 2018.
ISNAD Alizade, Rafail - Güngör, Serpil. “$\oplus$-Co-Coatomically Supplemented and Co-Coatomically Semiperfect Modules”. Hacettepe Journal of Mathematics and Statistics 47/6 (December 2018), 1417-1426.
JAMA Alizade R, Güngör S. $\oplus$-co-coatomically supplemented and co-coatomically semiperfect modules. Hacettepe Journal of Mathematics and Statistics. 2018;47:1417–1426.
MLA Alizade, Rafail and Serpil Güngör. “$\oplus$-Co-Coatomically Supplemented and Co-Coatomically Semiperfect Modules”. Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 6, 2018, pp. 1417-26.
Vancouver Alizade R, Güngör S. $\oplus$-co-coatomically supplemented and co-coatomically semiperfect modules. Hacettepe Journal of Mathematics and Statistics. 2018;47(6):1417-26.