Research Article
BibTex RIS Cite
Year 2018, Volume: 47 Issue: 6, 1634 - 1651, 12.12.2018

Abstract

References

  • Al-Mutairi, D. K., Ghitany, M. E. and Kundu, D. \textit{ Inferences on stress-strength reliability from Lindley distributions}, Commun. Statist. Theory Methods 42(8) , 1443-1463, 2013.
  • Bhattacharyya, G. K. and Johnson, R. A. Estimation of reliability in a multicomponent stress-strength model, J. Amer. Statist. Assoc., 69, 966-970, 1974.
  • Birnbaum, Z.W. On a use of the Mann-Whitney statistic. In: Proceedings of Third Berkeley Symposium on Mathematical Statistics and Probability, 1, 13-17, University of California Press, Berkeley, CA., 1956
  • Chen, M.H., Shao, Q.M., Ibrahim and J.G. Monte Carlo methods in Bayesian computation, Springer-Verlag, New York, 2000 .
  • Eryilmaz, S. Multivariate stress-strength reliability model and its evaluation for coherent structures, J. Multivariate Anal., 99, 1878-1887, 2008.
  • Gentle, JE. Random number generation and Monte Carlo methods, Springer, New York, 1998.
  • Ghitany, M. E., Al-Mutairi, D. K. and Aboukhamseen, S. M. Estimation of the reliability of a stress-strength system from power Lindley distributions, Commun. Statist. Simul. Comput., 44 ,118-136, 2015.
  • Jeffrey, H. Theory of probability, 3rd ed., Oxford University Press, 1961.
  • Kotz, S., Lumelskii, Y., and Pensky, M. The stress-strength model and its generalization: theory and applications, World Scientific, Singapore, 2003.
  • Krishnamoorthy, K., Mukherjee, S. and Guo, H. Inference on reliability in two-parameter exponential stress-strength model, Metrika, 6 ,261-273, 2007.
  • Kundu, D. and Gupta, R. D. Estimation of $P(X <Y)$ for the generalized exponential distribution, Metrika, 61, 291-308, 2005.
  • Kundu, D. and Gupta, R. D. Estimation of p(Y<X) for Weibull distribution, IEEE Trans. Rel., 55(2), 270-280, 2006.
  • Kundu, D. and Raqab, M. Z. Estimation of $R = P(Y < X)$ for three-parameter Weibull distribution, Statist. Probability Lett., 79, 1839-1846, 2009.
  • Lindley, D. V. Approximation Bayesian methods, Trabajos de Estadistica, 21, 223-237, 1980.
  • Mudholkar, G.S., Srivastava, D.K. and Freimer, M. The exponentiated Weibull family; a reanalysis of the bus motor failure data, Technometrics, 37, 436 - 445, 1995.
  • Pakdaman, Z. and Ahmadi, J. Stress- Strength reliability for$P[X_{r:n_{1},k:n_{2}}]$ in exponential case, Journal of the Turkish statistical association, 6(3), 92-102, 2013.
  • Pandey, M., Uddin, M. B. and Ferdous, J. Reliability estimation of an s-out-of-k system with non-identical component strengths: the Weibull case, Reliab. Eng. Sys. Saf., 36,109-116.
  • Rao, G. S. a and Kantam,R. R. L. Estimation of reliability in multicomponent stress-strength model: Log-logistic distribution, Electron. J. Appl. Statist. Anal, 3(2), 75-84, 2010.
  • Rao, G. S. Estimation of reliability in multicomponent stress-strength model based on generalized exponential distribution, Colombian J.Statist., 35(1), 67-76, 2012.
  • Rao, G. S. and Kantam,R. R. L., Rosaiah, K. and Reddy, J. P. Estimation of reliability in multicomponent stress-strength model based on inverse Rayleigh distribution, J. Statist. Appl. Probability, 3, 261-267, 2013.
  • Raqab, M. Z. and Kundu, D. Comparison of different estimators of $p(Y<X)$ for a scaled Burr type X distribution, Commun. Statist. Simul. Comput., 34(2), 465 - 483, 2006.
  • Robert, C.P. and Casella, G. Monte Carlo statistical methods, Second Edition, Springer, NewYork , 2004.
  • Saracoglu, B., Kinaci, I. and Kundu, D. On estimation of $R = p(Y < X)$ for exponential distribution under progressive type-II censoring, Journal of Statistical Computation and Simulation, 82(5), 729-744, 2012.
  • Sarhan, A. and Kundu, D. Generalized linear failure rate distribution, Commun. Statist. Theory Methods, 38, 642 - 660, 2009.
  • Shahsanaei, F and Daneshkhah, A. Estimation of stress strength model in generalized linear failure rate distribution, ArXiv Preprint $1312.0401$ v1, 2013.
  • Xia, Z. P., Yu, J. Y. , Cheng, L. D. , Liu, L. F. and Wang, W. M. Study on the breaking strength of jute fibers using modified Weibull distribution, Journal of Composites Part A: Applied Science and Manufacturing, 40, 54-59, 2009.

Estimation of reliability in a multicomponent stress- strength model based on generalized linear failure rate distribution

Year 2018, Volume: 47 Issue: 6, 1634 - 1651, 12.12.2018

Abstract

In this paper, we consider the problem of estimation reliability in multicomponent stress-strength model, when the system consists of $k$-components have strength are given by independently and identically distributed random variables $X_{1},...,X_{k}$ each component experiencing a random stress governed by a random variable $Y$. The reliability such system is obtained when strength and stress variables are given by a generalized linear failure rate distribution. The system is regarded as alive only if at least $s$ out of $k$ $(s<k)$ strength exceed the stress. The multicomponent reliability of the system is given by $R_{s,k}=P[$ at least $s$ of $X_{1},...,X_{k}$ exceed $Y]$. The maximum likelihood estimator $(MLE)$ and Bayes estimator of $R_{s,k}$ are obtained. A simulation study is performed to compare the different estimators of $R_{s,k}$. Real data is used as a practical application of the proposed procedure.

References

  • Al-Mutairi, D. K., Ghitany, M. E. and Kundu, D. \textit{ Inferences on stress-strength reliability from Lindley distributions}, Commun. Statist. Theory Methods 42(8) , 1443-1463, 2013.
  • Bhattacharyya, G. K. and Johnson, R. A. Estimation of reliability in a multicomponent stress-strength model, J. Amer. Statist. Assoc., 69, 966-970, 1974.
  • Birnbaum, Z.W. On a use of the Mann-Whitney statistic. In: Proceedings of Third Berkeley Symposium on Mathematical Statistics and Probability, 1, 13-17, University of California Press, Berkeley, CA., 1956
  • Chen, M.H., Shao, Q.M., Ibrahim and J.G. Monte Carlo methods in Bayesian computation, Springer-Verlag, New York, 2000 .
  • Eryilmaz, S. Multivariate stress-strength reliability model and its evaluation for coherent structures, J. Multivariate Anal., 99, 1878-1887, 2008.
  • Gentle, JE. Random number generation and Monte Carlo methods, Springer, New York, 1998.
  • Ghitany, M. E., Al-Mutairi, D. K. and Aboukhamseen, S. M. Estimation of the reliability of a stress-strength system from power Lindley distributions, Commun. Statist. Simul. Comput., 44 ,118-136, 2015.
  • Jeffrey, H. Theory of probability, 3rd ed., Oxford University Press, 1961.
  • Kotz, S., Lumelskii, Y., and Pensky, M. The stress-strength model and its generalization: theory and applications, World Scientific, Singapore, 2003.
  • Krishnamoorthy, K., Mukherjee, S. and Guo, H. Inference on reliability in two-parameter exponential stress-strength model, Metrika, 6 ,261-273, 2007.
  • Kundu, D. and Gupta, R. D. Estimation of $P(X <Y)$ for the generalized exponential distribution, Metrika, 61, 291-308, 2005.
  • Kundu, D. and Gupta, R. D. Estimation of p(Y<X) for Weibull distribution, IEEE Trans. Rel., 55(2), 270-280, 2006.
  • Kundu, D. and Raqab, M. Z. Estimation of $R = P(Y < X)$ for three-parameter Weibull distribution, Statist. Probability Lett., 79, 1839-1846, 2009.
  • Lindley, D. V. Approximation Bayesian methods, Trabajos de Estadistica, 21, 223-237, 1980.
  • Mudholkar, G.S., Srivastava, D.K. and Freimer, M. The exponentiated Weibull family; a reanalysis of the bus motor failure data, Technometrics, 37, 436 - 445, 1995.
  • Pakdaman, Z. and Ahmadi, J. Stress- Strength reliability for$P[X_{r:n_{1},k:n_{2}}]$ in exponential case, Journal of the Turkish statistical association, 6(3), 92-102, 2013.
  • Pandey, M., Uddin, M. B. and Ferdous, J. Reliability estimation of an s-out-of-k system with non-identical component strengths: the Weibull case, Reliab. Eng. Sys. Saf., 36,109-116.
  • Rao, G. S. a and Kantam,R. R. L. Estimation of reliability in multicomponent stress-strength model: Log-logistic distribution, Electron. J. Appl. Statist. Anal, 3(2), 75-84, 2010.
  • Rao, G. S. Estimation of reliability in multicomponent stress-strength model based on generalized exponential distribution, Colombian J.Statist., 35(1), 67-76, 2012.
  • Rao, G. S. and Kantam,R. R. L., Rosaiah, K. and Reddy, J. P. Estimation of reliability in multicomponent stress-strength model based on inverse Rayleigh distribution, J. Statist. Appl. Probability, 3, 261-267, 2013.
  • Raqab, M. Z. and Kundu, D. Comparison of different estimators of $p(Y<X)$ for a scaled Burr type X distribution, Commun. Statist. Simul. Comput., 34(2), 465 - 483, 2006.
  • Robert, C.P. and Casella, G. Monte Carlo statistical methods, Second Edition, Springer, NewYork , 2004.
  • Saracoglu, B., Kinaci, I. and Kundu, D. On estimation of $R = p(Y < X)$ for exponential distribution under progressive type-II censoring, Journal of Statistical Computation and Simulation, 82(5), 729-744, 2012.
  • Sarhan, A. and Kundu, D. Generalized linear failure rate distribution, Commun. Statist. Theory Methods, 38, 642 - 660, 2009.
  • Shahsanaei, F and Daneshkhah, A. Estimation of stress strength model in generalized linear failure rate distribution, ArXiv Preprint $1312.0401$ v1, 2013.
  • Xia, Z. P., Yu, J. Y. , Cheng, L. D. , Liu, L. F. and Wang, W. M. Study on the breaking strength of jute fibers using modified Weibull distribution, Journal of Composites Part A: Applied Science and Manufacturing, 40, 54-59, 2009.
There are 26 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Statistics
Authors

M. Kh. Hassan This is me

M. İ. Alohali This is me

Publication Date December 12, 2018
Published in Issue Year 2018 Volume: 47 Issue: 6

Cite

APA Hassan, M. K., & Alohali, M. İ. (2018). Estimation of reliability in a multicomponent stress- strength model based on generalized linear failure rate distribution. Hacettepe Journal of Mathematics and Statistics, 47(6), 1634-1651.
AMA Hassan MK, Alohali Mİ. Estimation of reliability in a multicomponent stress- strength model based on generalized linear failure rate distribution. Hacettepe Journal of Mathematics and Statistics. December 2018;47(6):1634-1651.
Chicago Hassan, M. Kh., and M. İ. Alohali. “Estimation of Reliability in a Multicomponent Stress- Strength Model Based on Generalized Linear Failure Rate Distribution”. Hacettepe Journal of Mathematics and Statistics 47, no. 6 (December 2018): 1634-51.
EndNote Hassan MK, Alohali Mİ (December 1, 2018) Estimation of reliability in a multicomponent stress- strength model based on generalized linear failure rate distribution. Hacettepe Journal of Mathematics and Statistics 47 6 1634–1651.
IEEE M. K. Hassan and M. İ. Alohali, “Estimation of reliability in a multicomponent stress- strength model based on generalized linear failure rate distribution”, Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 6, pp. 1634–1651, 2018.
ISNAD Hassan, M. Kh. - Alohali, M. İ. “Estimation of Reliability in a Multicomponent Stress- Strength Model Based on Generalized Linear Failure Rate Distribution”. Hacettepe Journal of Mathematics and Statistics 47/6 (December 2018), 1634-1651.
JAMA Hassan MK, Alohali Mİ. Estimation of reliability in a multicomponent stress- strength model based on generalized linear failure rate distribution. Hacettepe Journal of Mathematics and Statistics. 2018;47:1634–1651.
MLA Hassan, M. Kh. and M. İ. Alohali. “Estimation of Reliability in a Multicomponent Stress- Strength Model Based on Generalized Linear Failure Rate Distribution”. Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 6, 2018, pp. 1634-51.
Vancouver Hassan MK, Alohali Mİ. Estimation of reliability in a multicomponent stress- strength model based on generalized linear failure rate distribution. Hacettepe Journal of Mathematics and Statistics. 2018;47(6):1634-51.