Research Article
BibTex RIS Cite
Year 2018, Volume: 47 Issue: 6, 1690 - 1714, 12.12.2018

Abstract

References

  • Agarwal, D.K. and Gelfand, A.E. Slice sampling for simulation based fitting of spatial data models, Statistics and Computing 15, 61-69, 2005.
  • Balkema, A.A. and De Haan, L. Residual Life Time at Great Age, The Annals of Probability 2, 792-804, 1974.
  • Besag, J. and Green, P. Spatial statistics and Bayesian computation, Journal of the Royal Statistical Society. Series B (Methodological), 25-37, 1993.
  • Castillo, E. Extremes in engineering applications, Extreme Value Theory and Applications, Springer, Dordrecht, Netherlands, 15-42, 1994.
  • Chen, M.H. and Schmeiser, B.W. [Slice Sampling]: Discussion, Annals of Statistics, 42-743, 2003.
  • Coles, S. An introduction to statistical modeling of extreme values, Springer-Verlag, 2001.
  • Coles, S. and Powell, E. Bayesian methods in extreme value modelling: a review and new developments, International Statistical Review/Revue Internationale de Statistique, 119- 136, 1996.
  • Coles, S. , Pericchi, L.R. and S. Sisson, A fully probabilistic approach to extreme rainfall modeling, Journal of Hydrology 273, 35-50, 2003.
  • Damien, P. and Walker, S.G. Sampling truncated normal, beta, and gamma densities, Journal of Computational and Graphical Statistics 10, 206-215, 2001.
  • Damlen, P. , Wakefield, J. and Walker, S. Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61, 331-344, 1999.
  • Davison, A.C. and Smith, R.L. Models for exceedances over high thresholds, Journal of the Royal Statistical Society. Series B (Methodological), 393-442, 1990.
  • De Haan, L. On regular variation and its application to the weak convergence of sample extremes, Mathematical Centre tracts Mathematisch Centrum, 1970.
  • DuBois, C. , Korattikara, A. , Welling, M. and P. Smyth, Approximate slice sampling for bayesian posterior inference, Artificial Intelligence and Statistics, 2014.
  • Edwards, R.G. and Sokal, A.D. Dynamic critical behavior of Wolff's collective-mode Monte Carlo algorithm for the two-dimensional O (n) nonlinear a model, Phys. Rev. D 40, 1374- 1377, 1989.
  • Favaro, S. and Walker, S.G. Slice sampling $\sigma$-stable Poisson-Kingman mixture models, Journal of Computational and Graphical Statistics 22, 830-847 2013.
  • Fisher, R. and Tippett, L. Limiting forms of the frequency distribution of the largest or smallest member of a sample, Mathematical Proceedings of the Cambridge Philosophical Society 24, 180-190, 1928.
  • Fishman, G.S. An analysis of Swendsen-Wang and related sampling methods, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61 ,623-641, 1999.
  • Fréchet, M. Sur la loi de probabilité de l'écart maximum, Annales de la societe Polonaise de Mathematique 6, 93-116, 1927.
  • Garavaglia, F., Gailhard, J., Paquet, E., Lang, M., Garçon, R. and Bernardara, P. Introducing a rainfall compound distribution model based on weather patterns sub-sampling, Hydrology and Earth System Sciences Discussions 14, 951, 2010.
  • Gençay, R., Selçuk, F. and A. Ulugülyagci, High volatility, thick tails and extreme value theory in value-at-risk estimation, Insurance: Mathematics and Economics 33, 337-356, 2003.
  • Gilli, M. and Kellezi, E. An application of extreme value theory for measuring financial risk, Computational Economics 27 , 207-228, 2006.
  • Gnedenko, B. Stir La Distribution Limite Du Terme Maximum D'une Sarie Alaatoire, Annales de Mathématiques , 423-453, 1943.
  • Goldstein, J. , Mirza, M. , Etkin, D. , and Milton, J. J2. 6 hydrologic assessment: Application of extreme value theory for climate extremes scenarios construction, 14th Symposium on Global Change and Climate Variations, American Meteorological Society 83rd Annual Meeting, 2003.
  • Hammersley, J. and Morton, K. A new Monte Carlo technique: antithetic variates, Mathematical Proceedings of the Cambridge Philosophical Society 52, 449-475, 1956.
  • Higdon, D. Auxiliary variable methods for Markov chain Monte Carlo with applications, Journal of the American Statistical Association 93, 585-595, 1998.
  • Hosking, J.R. andWallis, J.R. Parameter and quantile estimation for the generalized Pareto distribution, Technometrics 29 , 339-349, 1987.
  • Jagger, T.H. and Elsner, J.B. Climatology models for extreme hurricane winds near the United States, Journal of Climate 19, 3220-3236, 2006.
  • Kalli, M. , Grin, J.E. and Walker, S.G. Slice sampling mixture models, Statistics and Computing 21, 93-105, 2011.
  • Liechty, M.W. and Lu, J. Multivariate Normal Slice Sampling, Journal of Computational and Graphical Statistics 19, 281-294, 2010.
  • McNeil, A.J. and Frey, R. Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach, Journal of Empirical Finance 7 , pp. 271-300, 2000.
  • Mira, A. and Tierney, L. Efficiency and convergence properties of slice samplers, Scandinavian Journal of Statistics 29, 1-12, 2002.
  • Mira, A. and Tierney, L. On the use of auxiliary variables in Markov chain Monte Carlo sampling, Technical Report, University of Minnesota, School of Statistics, 1997.
  • Mira, A. , Møller, J. and Roberts, G.O. Perfect slice samplers, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63, 593-606, 2001.
  • Murray,I. , Adams,R. and MacKay, D. Elliptical slice sampling, arXiv preprint arXiv:1001.0175, 2009.
  • Neal, R. Slice sampling, Annals of Statistics, 705-741, 2003.
  • Nieto, M. , Cortés, A. , Barandiaran, J. , Otaegui, O. and Etxabe, I. Single Camera Railways Track Profile Inspection Using an Slice Sampling-Based Particle Filter, Computer Vision, Imaging and Computer Graphics. Theory and Application, Springer, 326-339, 2013.
  • Nishihara, R. , Murray, I. and Adams, R.P. Parallel MCMC with generalized elliptical slice sampling, The Journal of Machine Learning Research 152087-2112, 2014.
  • Pickands III, J. Statistical inference using extreme order statistics, the Annals of Statistics, 119-131, 1975.
  • Robert, C. and Casella, G. Monte Carlo Statistical Methods Springer, Citeseer 319, 2004.
  • Robert, C. and Casella, G. Introducing Monte Carlo Methods with R, Springer Science & Business Media, 2009.
  • Roberts, G.O. and Rosenthal, J.S. Convergence of slice sampler Markov chains, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61,643-660, 1999.
  • Rocco, M. Extreme value theory in finance: A survey, Journal of Economic Surveys 28, 82-108, 2014.
  • Skold, M. Computer intensive statistical methods, Center for Mathematical Sciences, Lund University, 2005.
  • Smith, R. Extreme value statistics in meteorology and the environment, Environmental Statistics 8, 300-357, 2001.
  • Smith, R. L. and Shively, T. S. Point process approach to modeling trends in tropospheric ozone based on exceedances of a high threshold, Atmospheric Environment 29, pp. 3489-3499, 1995.
  • Swendsen, R. and Wang, J. Nonuniversal critical dynamics in Monte Carlo simulations, Physical Review Letters 58, 86-88, 1987.
  • Tibbits, M.M. , Groendyke, C. , Haran, M. and Liechty, J.C. Automated Factor Slice Sampling, Journal of Computational and Graphical Statistics 23, 543-563, 2014.
  • Tibbits, M.M. , Haran, M. and J.C. Liechty, Parallel multivariate slice sampling, Statistics and Computing 21, 415-430, 2011.
  • Trepanier, J.C. and Scheitlin, K.N. Hurricane wind risk in Louisiana, Natural hazards 70, 1181-1195, 2014.
  • Trotter, H.F. and Tukey, J.W. Conditional Monte Carlo for Normal-Samples, Symposium on Monte Carlo Methods, HA Meyer, ed.(New York: John Wiley, 1956) , 64, 1954.
  • Walker, S.G. Sampling the Dirichlet mixture model with slices, Communications in Statistics-Simulation and Computation 36, 45-54, 2007.
  • Yildirim, I. Bayesian Inference: Metropolis-Hastings Sampling, Dept. of Brain and Cognitive Sciences, Univ. of Rochester, Rochester, NY, 2012.

Slice sampler algorithm for generalized Pareto distribution

Year 2018, Volume: 47 Issue: 6, 1690 - 1714, 12.12.2018

Abstract

In this paper, we developed the slice sampler algorithm for the generalized Pareto distribution (GPD) model. Two simulation studies have shown the performance of the peaks over given threshold (POT) and GPD density function on various simulated data sets. The results were compared with another commonly used Markov chain Monte Carlo (MCMC) technique called Metropolis-Hastings algorithm. Based on the results, the slice sampler algorithm provides closer posterior mean values and shorter $95\%$ quantile based credible intervals compared to the Metropolis-Hastings algorithm. Moreover, the slice sampler algorithm presents a higher level of stationarity in terms of the scale and shape parameters compared with the Metropolis-Hastings algorithm. Finally, the slice sampler algorithm  was employed to estimate the return and risk values of investment in Malaysian gold market.

References

  • Agarwal, D.K. and Gelfand, A.E. Slice sampling for simulation based fitting of spatial data models, Statistics and Computing 15, 61-69, 2005.
  • Balkema, A.A. and De Haan, L. Residual Life Time at Great Age, The Annals of Probability 2, 792-804, 1974.
  • Besag, J. and Green, P. Spatial statistics and Bayesian computation, Journal of the Royal Statistical Society. Series B (Methodological), 25-37, 1993.
  • Castillo, E. Extremes in engineering applications, Extreme Value Theory and Applications, Springer, Dordrecht, Netherlands, 15-42, 1994.
  • Chen, M.H. and Schmeiser, B.W. [Slice Sampling]: Discussion, Annals of Statistics, 42-743, 2003.
  • Coles, S. An introduction to statistical modeling of extreme values, Springer-Verlag, 2001.
  • Coles, S. and Powell, E. Bayesian methods in extreme value modelling: a review and new developments, International Statistical Review/Revue Internationale de Statistique, 119- 136, 1996.
  • Coles, S. , Pericchi, L.R. and S. Sisson, A fully probabilistic approach to extreme rainfall modeling, Journal of Hydrology 273, 35-50, 2003.
  • Damien, P. and Walker, S.G. Sampling truncated normal, beta, and gamma densities, Journal of Computational and Graphical Statistics 10, 206-215, 2001.
  • Damlen, P. , Wakefield, J. and Walker, S. Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61, 331-344, 1999.
  • Davison, A.C. and Smith, R.L. Models for exceedances over high thresholds, Journal of the Royal Statistical Society. Series B (Methodological), 393-442, 1990.
  • De Haan, L. On regular variation and its application to the weak convergence of sample extremes, Mathematical Centre tracts Mathematisch Centrum, 1970.
  • DuBois, C. , Korattikara, A. , Welling, M. and P. Smyth, Approximate slice sampling for bayesian posterior inference, Artificial Intelligence and Statistics, 2014.
  • Edwards, R.G. and Sokal, A.D. Dynamic critical behavior of Wolff's collective-mode Monte Carlo algorithm for the two-dimensional O (n) nonlinear a model, Phys. Rev. D 40, 1374- 1377, 1989.
  • Favaro, S. and Walker, S.G. Slice sampling $\sigma$-stable Poisson-Kingman mixture models, Journal of Computational and Graphical Statistics 22, 830-847 2013.
  • Fisher, R. and Tippett, L. Limiting forms of the frequency distribution of the largest or smallest member of a sample, Mathematical Proceedings of the Cambridge Philosophical Society 24, 180-190, 1928.
  • Fishman, G.S. An analysis of Swendsen-Wang and related sampling methods, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61 ,623-641, 1999.
  • Fréchet, M. Sur la loi de probabilité de l'écart maximum, Annales de la societe Polonaise de Mathematique 6, 93-116, 1927.
  • Garavaglia, F., Gailhard, J., Paquet, E., Lang, M., Garçon, R. and Bernardara, P. Introducing a rainfall compound distribution model based on weather patterns sub-sampling, Hydrology and Earth System Sciences Discussions 14, 951, 2010.
  • Gençay, R., Selçuk, F. and A. Ulugülyagci, High volatility, thick tails and extreme value theory in value-at-risk estimation, Insurance: Mathematics and Economics 33, 337-356, 2003.
  • Gilli, M. and Kellezi, E. An application of extreme value theory for measuring financial risk, Computational Economics 27 , 207-228, 2006.
  • Gnedenko, B. Stir La Distribution Limite Du Terme Maximum D'une Sarie Alaatoire, Annales de Mathématiques , 423-453, 1943.
  • Goldstein, J. , Mirza, M. , Etkin, D. , and Milton, J. J2. 6 hydrologic assessment: Application of extreme value theory for climate extremes scenarios construction, 14th Symposium on Global Change and Climate Variations, American Meteorological Society 83rd Annual Meeting, 2003.
  • Hammersley, J. and Morton, K. A new Monte Carlo technique: antithetic variates, Mathematical Proceedings of the Cambridge Philosophical Society 52, 449-475, 1956.
  • Higdon, D. Auxiliary variable methods for Markov chain Monte Carlo with applications, Journal of the American Statistical Association 93, 585-595, 1998.
  • Hosking, J.R. andWallis, J.R. Parameter and quantile estimation for the generalized Pareto distribution, Technometrics 29 , 339-349, 1987.
  • Jagger, T.H. and Elsner, J.B. Climatology models for extreme hurricane winds near the United States, Journal of Climate 19, 3220-3236, 2006.
  • Kalli, M. , Grin, J.E. and Walker, S.G. Slice sampling mixture models, Statistics and Computing 21, 93-105, 2011.
  • Liechty, M.W. and Lu, J. Multivariate Normal Slice Sampling, Journal of Computational and Graphical Statistics 19, 281-294, 2010.
  • McNeil, A.J. and Frey, R. Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach, Journal of Empirical Finance 7 , pp. 271-300, 2000.
  • Mira, A. and Tierney, L. Efficiency and convergence properties of slice samplers, Scandinavian Journal of Statistics 29, 1-12, 2002.
  • Mira, A. and Tierney, L. On the use of auxiliary variables in Markov chain Monte Carlo sampling, Technical Report, University of Minnesota, School of Statistics, 1997.
  • Mira, A. , Møller, J. and Roberts, G.O. Perfect slice samplers, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63, 593-606, 2001.
  • Murray,I. , Adams,R. and MacKay, D. Elliptical slice sampling, arXiv preprint arXiv:1001.0175, 2009.
  • Neal, R. Slice sampling, Annals of Statistics, 705-741, 2003.
  • Nieto, M. , Cortés, A. , Barandiaran, J. , Otaegui, O. and Etxabe, I. Single Camera Railways Track Profile Inspection Using an Slice Sampling-Based Particle Filter, Computer Vision, Imaging and Computer Graphics. Theory and Application, Springer, 326-339, 2013.
  • Nishihara, R. , Murray, I. and Adams, R.P. Parallel MCMC with generalized elliptical slice sampling, The Journal of Machine Learning Research 152087-2112, 2014.
  • Pickands III, J. Statistical inference using extreme order statistics, the Annals of Statistics, 119-131, 1975.
  • Robert, C. and Casella, G. Monte Carlo Statistical Methods Springer, Citeseer 319, 2004.
  • Robert, C. and Casella, G. Introducing Monte Carlo Methods with R, Springer Science & Business Media, 2009.
  • Roberts, G.O. and Rosenthal, J.S. Convergence of slice sampler Markov chains, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61,643-660, 1999.
  • Rocco, M. Extreme value theory in finance: A survey, Journal of Economic Surveys 28, 82-108, 2014.
  • Skold, M. Computer intensive statistical methods, Center for Mathematical Sciences, Lund University, 2005.
  • Smith, R. Extreme value statistics in meteorology and the environment, Environmental Statistics 8, 300-357, 2001.
  • Smith, R. L. and Shively, T. S. Point process approach to modeling trends in tropospheric ozone based on exceedances of a high threshold, Atmospheric Environment 29, pp. 3489-3499, 1995.
  • Swendsen, R. and Wang, J. Nonuniversal critical dynamics in Monte Carlo simulations, Physical Review Letters 58, 86-88, 1987.
  • Tibbits, M.M. , Groendyke, C. , Haran, M. and Liechty, J.C. Automated Factor Slice Sampling, Journal of Computational and Graphical Statistics 23, 543-563, 2014.
  • Tibbits, M.M. , Haran, M. and J.C. Liechty, Parallel multivariate slice sampling, Statistics and Computing 21, 415-430, 2011.
  • Trepanier, J.C. and Scheitlin, K.N. Hurricane wind risk in Louisiana, Natural hazards 70, 1181-1195, 2014.
  • Trotter, H.F. and Tukey, J.W. Conditional Monte Carlo for Normal-Samples, Symposium on Monte Carlo Methods, HA Meyer, ed.(New York: John Wiley, 1956) , 64, 1954.
  • Walker, S.G. Sampling the Dirichlet mixture model with slices, Communications in Statistics-Simulation and Computation 36, 45-54, 2007.
  • Yildirim, I. Bayesian Inference: Metropolis-Hastings Sampling, Dept. of Brain and Cognitive Sciences, Univ. of Rochester, Rochester, NY, 2012.
There are 52 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Statistics
Authors

Mohammad Rostami This is me

Mohd Bakri Adam Yahya This is me

Mohamed Hisham Yahya This is me

Noor Akma Ibrahim This is me

Publication Date December 12, 2018
Published in Issue Year 2018 Volume: 47 Issue: 6

Cite

APA Rostami, M., Yahya, M. B. A., Yahya, M. H., Ibrahim, N. A. (2018). Slice sampler algorithm for generalized Pareto distribution. Hacettepe Journal of Mathematics and Statistics, 47(6), 1690-1714.
AMA Rostami M, Yahya MBA, Yahya MH, Ibrahim NA. Slice sampler algorithm for generalized Pareto distribution. Hacettepe Journal of Mathematics and Statistics. December 2018;47(6):1690-1714.
Chicago Rostami, Mohammad, Mohd Bakri Adam Yahya, Mohamed Hisham Yahya, and Noor Akma Ibrahim. “Slice Sampler Algorithm for Generalized Pareto Distribution”. Hacettepe Journal of Mathematics and Statistics 47, no. 6 (December 2018): 1690-1714.
EndNote Rostami M, Yahya MBA, Yahya MH, Ibrahim NA (December 1, 2018) Slice sampler algorithm for generalized Pareto distribution. Hacettepe Journal of Mathematics and Statistics 47 6 1690–1714.
IEEE M. Rostami, M. B. A. Yahya, M. H. Yahya, and N. A. Ibrahim, “Slice sampler algorithm for generalized Pareto distribution”, Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 6, pp. 1690–1714, 2018.
ISNAD Rostami, Mohammad et al. “Slice Sampler Algorithm for Generalized Pareto Distribution”. Hacettepe Journal of Mathematics and Statistics 47/6 (December 2018), 1690-1714.
JAMA Rostami M, Yahya MBA, Yahya MH, Ibrahim NA. Slice sampler algorithm for generalized Pareto distribution. Hacettepe Journal of Mathematics and Statistics. 2018;47:1690–1714.
MLA Rostami, Mohammad et al. “Slice Sampler Algorithm for Generalized Pareto Distribution”. Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 6, 2018, pp. 1690-14.
Vancouver Rostami M, Yahya MBA, Yahya MH, Ibrahim NA. Slice sampler algorithm for generalized Pareto distribution. Hacettepe Journal of Mathematics and Statistics. 2018;47(6):1690-714.