Research Article
BibTex RIS Cite
Year 2025, Early Access, 1 - 10

Abstract

References

  • 1] G. Adilov, I. Yesilce, B−1 -Convex Functions, J. Convex Anal. 24 (2), 505-517, 2017.

The Hermite-Hadamard Type Inequalities for the Functions Whose Derivative is Logarithmic p-Convex Functio

Year 2025, Early Access, 1 - 10

Abstract

By means of an integral identity, several Hermite-Hadamard
type inequalities are presented in this study for a function whose derivative’s absolute value is the log-p-convex function. With the use of these
findings, we are able to determine the boundaries in terms of elementary functions for certain specific functions, such as the imaginary error
function, the exponential integral, the hyperbolic sine and and cosine
functions. Additionally, a relationship between beta function, the hyperbolic sine and cosine functions is stated. Through the obtained results,
a bound for numerical integration of such type functions is provided.

References

  • 1] G. Adilov, I. Yesilce, B−1 -Convex Functions, J. Convex Anal. 24 (2), 505-517, 2017.
There are 1 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Mathematics
Authors

Gültekin Tınaztepe 0000-0001-7594-1620

Sinem Sezer Evcan 0000-0003-2066-7833

Zeynep Eken 0000-0002-8939-4653

Sevda Sezer 0000-0001-6448-193X

Early Pub Date August 27, 2024
Publication Date
Submission Date February 28, 2024
Acceptance Date April 23, 2024
Published in Issue Year 2025 Early Access

Cite

APA Tınaztepe, G., Sezer Evcan, S., Eken, Z., Sezer, S. (2024). The Hermite-Hadamard Type Inequalities for the Functions Whose Derivative is Logarithmic p-Convex Functio. Hacettepe Journal of Mathematics and Statistics1-10. https://doi.org/10.15672/hujms.1444589
AMA Tınaztepe G, Sezer Evcan S, Eken Z, Sezer S. The Hermite-Hadamard Type Inequalities for the Functions Whose Derivative is Logarithmic p-Convex Functio. Hacettepe Journal of Mathematics and Statistics. Published online August 1, 2024:1-10. doi:10.15672/hujms.1444589
Chicago Tınaztepe, Gültekin, Sinem Sezer Evcan, Zeynep Eken, and Sevda Sezer. “The Hermite-Hadamard Type Inequalities for the Functions Whose Derivative Is Logarithmic P-Convex Functio”. Hacettepe Journal of Mathematics and Statistics, August (August 2024), 1-10. https://doi.org/10.15672/hujms.1444589.
EndNote Tınaztepe G, Sezer Evcan S, Eken Z, Sezer S (August 1, 2024) The Hermite-Hadamard Type Inequalities for the Functions Whose Derivative is Logarithmic p-Convex Functio. Hacettepe Journal of Mathematics and Statistics 1–10.
IEEE G. Tınaztepe, S. Sezer Evcan, Z. Eken, and S. Sezer, “The Hermite-Hadamard Type Inequalities for the Functions Whose Derivative is Logarithmic p-Convex Functio”, Hacettepe Journal of Mathematics and Statistics, pp. 1–10, August 2024, doi: 10.15672/hujms.1444589.
ISNAD Tınaztepe, Gültekin et al. “The Hermite-Hadamard Type Inequalities for the Functions Whose Derivative Is Logarithmic P-Convex Functio”. Hacettepe Journal of Mathematics and Statistics. August 2024. 1-10. https://doi.org/10.15672/hujms.1444589.
JAMA Tınaztepe G, Sezer Evcan S, Eken Z, Sezer S. The Hermite-Hadamard Type Inequalities for the Functions Whose Derivative is Logarithmic p-Convex Functio. Hacettepe Journal of Mathematics and Statistics. 2024;:1–10.
MLA Tınaztepe, Gültekin et al. “The Hermite-Hadamard Type Inequalities for the Functions Whose Derivative Is Logarithmic P-Convex Functio”. Hacettepe Journal of Mathematics and Statistics, 2024, pp. 1-10, doi:10.15672/hujms.1444589.
Vancouver Tınaztepe G, Sezer Evcan S, Eken Z, Sezer S. The Hermite-Hadamard Type Inequalities for the Functions Whose Derivative is Logarithmic p-Convex Functio. Hacettepe Journal of Mathematics and Statistics. 2024:1-10.