Research Article
BibTex RIS Cite

Non-weak cut, non-block, shore, and non-strong center points of $F_n^K(X)$

Year 2025, Early Access, 1 - 9
https://doi.org/10.15672/hujms.1451354

Abstract

Given a continuum $X$ and a positive integer $n$, $F_{n}(X)$ denotes the hyperspace of all nonempty subsets of $X$ with at most $n$ points endowed with the Hausdorff metric. For $K\in F_{n}(X)$, $F_{n}(K,X)$ denotes the set of all elements of $F_{n}(X)$ containing $K$. We will consider $F_{n}^K(X)$ the quotient space obtained from $F_{n}(X)$ by shrinking $F_{n}(K,X)$ to one point set, endowed with the quotient topology. In this paper, we study the relationship between some types of non-cut points of $F_{n}^{K}(X)$ and the condition of being of the same type of non-cut set over its preimages in $F_{n}(X)$ under the natural quotient map. The non-cut type sets considered here are: non-weak cut, non-block, shore, and non-strong center sets.

References

  • [1] J. G. Anaya and D. Maya, Non-cut ordered arcs of the hyperspace of subcontinua, Topology Appl. 349, 1-10, 108908, 2024.
There are 1 citations in total.

Details

Primary Language English
Subjects Topology
Journal Section Mathematics
Authors

Roberto Carlos Mondragón Alvarez 0009-0004-9313-3079

Florencio Corona-vázquez 0000-0002-7024-9392

Russell-aaron Quinones-estrella 0000-0002-7347-4675

Javier Sánchez-martínez 0000-0002-1579-7273

Early Pub Date October 6, 2025
Publication Date November 10, 2025
Submission Date March 12, 2024
Acceptance Date May 13, 2025
Published in Issue Year 2025 Early Access

Cite

APA Mondragón Alvarez, R. C., Corona-vázquez, F., Quinones-estrella, R.- aaron, Sánchez-martínez, J. (2025). Non-weak cut, non-block, shore, and non-strong center points of $F_n^K(X)$. Hacettepe Journal of Mathematics and Statistics1-9. https://doi.org/10.15672/hujms.1451354
AMA Mondragón Alvarez RC, Corona-vázquez F, Quinones-estrella R aaron, Sánchez-martínez J. Non-weak cut, non-block, shore, and non-strong center points of $F_n^K(X)$. Hacettepe Journal of Mathematics and Statistics. Published online October 1, 2025:1-9. doi:10.15672/hujms.1451354
Chicago Mondragón Alvarez, Roberto Carlos, Florencio Corona-vázquez, Russell-aaron Quinones-estrella, and Javier Sánchez-martínez. “Non-Weak Cut, Non-Block, Shore, and Non-Strong Center Points of $F_n^K(X)$”. Hacettepe Journal of Mathematics and Statistics, October (October 2025), 1-9. https://doi.org/10.15672/hujms.1451354.
EndNote Mondragón Alvarez RC, Corona-vázquez F, Quinones-estrella R- aaron, Sánchez-martínez J (October 1, 2025) Non-weak cut, non-block, shore, and non-strong center points of $F_n^K(X)$. Hacettepe Journal of Mathematics and Statistics 1–9.
IEEE R. C. Mondragón Alvarez, F. Corona-vázquez, R.- aaron Quinones-estrella, and J. Sánchez-martínez, “Non-weak cut, non-block, shore, and non-strong center points of $F_n^K(X)$”, Hacettepe Journal of Mathematics and Statistics, pp. 1–9, October2025, doi: 10.15672/hujms.1451354.
ISNAD Mondragón Alvarez, Roberto Carlos et al. “Non-Weak Cut, Non-Block, Shore, and Non-Strong Center Points of $F_n^K(X)$”. Hacettepe Journal of Mathematics and Statistics. October2025. 1-9. https://doi.org/10.15672/hujms.1451354.
JAMA Mondragón Alvarez RC, Corona-vázquez F, Quinones-estrella R- aaron, Sánchez-martínez J. Non-weak cut, non-block, shore, and non-strong center points of $F_n^K(X)$. Hacettepe Journal of Mathematics and Statistics. 2025;:1–9.
MLA Mondragón Alvarez, Roberto Carlos et al. “Non-Weak Cut, Non-Block, Shore, and Non-Strong Center Points of $F_n^K(X)$”. Hacettepe Journal of Mathematics and Statistics, 2025, pp. 1-9, doi:10.15672/hujms.1451354.
Vancouver Mondragón Alvarez RC, Corona-vázquez F, Quinones-estrella R- aaron, Sánchez-martínez J. Non-weak cut, non-block, shore, and non-strong center points of $F_n^K(X)$. Hacettepe Journal of Mathematics and Statistics. 2025:1-9.