Research Article
BibTex RIS Cite

The Borel property for 4-dimensional matrices

Year 2016, Volume: 45 Issue: 2, 473 - 482, 01.04.2016

Abstract

In 1909 Borel has proved that “Almost all of the sequences of 0’s and 1’s
are Cesàro summable to 1
2
". Then Hill has generalized Borel’s result
to two dimensional matrices. In this paper we investigate the Borel
property for 4-dimensional matrices. 

References

  • Borel E., Les probabilities denombrables et leurs applications arithmetiques, Rendiconti del Circolo Matematico di Palermo, 27, 247-271, 1909.
  • Bromwich M.A., An introduction to the theory of infinite series, (Macmillan Co., London, 1942).
  • Connor J., Almost none of the sequences of 0’s and 1’s are almost convergent, Internat. J. Math. Math. Sci. 13, 775-777, 1990.
  • Crnjac M., Cunjalo F. and Miller H.I., ˘ Subsequence characterizations of statistical convergence of double sequences, Radovi Math., 12, 163-175, 2004.
  • Garreau G.A., A note on the summation of sequences of 0’s and 1’s, Annals of Mathematics, 54, 183-185, 1951.
  • Hill J.D., Summability of sequences of 0’s and 1’s, Annals of Mathematics, 46, 556-562, 1945.
  • Hill J.D., The Borel property of summability methods, Pacific J. Math., 1, 399-409, 1951.
  • Hill J.D., Remarks on the Borel property, Pacific J. Math., 4, 227-242, 1954.
  • Móricz F. and Rhoades B.E., Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Camb. Phil. Soc. 104, 283-294, 1988
  • Parameswaran M.R., Note on the summability of sequences of zeros and ones, Proc. Nat. Inst. Sci. India Part A 27, 129-136, 1961.
  • Pringsheim A., On the theory of double infinite sequences of numbers. (Zur theorie der zweifach unendlichen zahlenfolgen.), Math. Ann., 53, 289-321, 1900.
  • Robison G.M., Divergent double sequences and series, Trans. Amer. Math. Soc. 28, 50-73, 1926.
  • Tas E. and Orhan C., Cesàro means of subsequences of double sequences, submitted. 482
  • Visser C., The law of nought-or-one in the theory of probability, Studia Mathematica, 7, 143-149, 1938.
Year 2016, Volume: 45 Issue: 2, 473 - 482, 01.04.2016

Abstract

References

  • Borel E., Les probabilities denombrables et leurs applications arithmetiques, Rendiconti del Circolo Matematico di Palermo, 27, 247-271, 1909.
  • Bromwich M.A., An introduction to the theory of infinite series, (Macmillan Co., London, 1942).
  • Connor J., Almost none of the sequences of 0’s and 1’s are almost convergent, Internat. J. Math. Math. Sci. 13, 775-777, 1990.
  • Crnjac M., Cunjalo F. and Miller H.I., ˘ Subsequence characterizations of statistical convergence of double sequences, Radovi Math., 12, 163-175, 2004.
  • Garreau G.A., A note on the summation of sequences of 0’s and 1’s, Annals of Mathematics, 54, 183-185, 1951.
  • Hill J.D., Summability of sequences of 0’s and 1’s, Annals of Mathematics, 46, 556-562, 1945.
  • Hill J.D., The Borel property of summability methods, Pacific J. Math., 1, 399-409, 1951.
  • Hill J.D., Remarks on the Borel property, Pacific J. Math., 4, 227-242, 1954.
  • Móricz F. and Rhoades B.E., Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Camb. Phil. Soc. 104, 283-294, 1988
  • Parameswaran M.R., Note on the summability of sequences of zeros and ones, Proc. Nat. Inst. Sci. India Part A 27, 129-136, 1961.
  • Pringsheim A., On the theory of double infinite sequences of numbers. (Zur theorie der zweifach unendlichen zahlenfolgen.), Math. Ann., 53, 289-321, 1900.
  • Robison G.M., Divergent double sequences and series, Trans. Amer. Math. Soc. 28, 50-73, 1926.
  • Tas E. and Orhan C., Cesàro means of subsequences of double sequences, submitted. 482
  • Visser C., The law of nought-or-one in the theory of probability, Studia Mathematica, 7, 143-149, 1938.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Emre Taş

Publication Date April 1, 2016
Published in Issue Year 2016 Volume: 45 Issue: 2

Cite

APA Taş, E. (2016). The Borel property for 4-dimensional matrices. Hacettepe Journal of Mathematics and Statistics, 45(2), 473-482.
AMA Taş E. The Borel property for 4-dimensional matrices. Hacettepe Journal of Mathematics and Statistics. April 2016;45(2):473-482.
Chicago Taş, Emre. “The Borel Property for 4-Dimensional Matrices”. Hacettepe Journal of Mathematics and Statistics 45, no. 2 (April 2016): 473-82.
EndNote Taş E (April 1, 2016) The Borel property for 4-dimensional matrices. Hacettepe Journal of Mathematics and Statistics 45 2 473–482.
IEEE E. Taş, “The Borel property for 4-dimensional matrices”, Hacettepe Journal of Mathematics and Statistics, vol. 45, no. 2, pp. 473–482, 2016.
ISNAD Taş, Emre. “The Borel Property for 4-Dimensional Matrices”. Hacettepe Journal of Mathematics and Statistics 45/2 (April 2016), 473-482.
JAMA Taş E. The Borel property for 4-dimensional matrices. Hacettepe Journal of Mathematics and Statistics. 2016;45:473–482.
MLA Taş, Emre. “The Borel Property for 4-Dimensional Matrices”. Hacettepe Journal of Mathematics and Statistics, vol. 45, no. 2, 2016, pp. 473-82.
Vancouver Taş E. The Borel property for 4-dimensional matrices. Hacettepe Journal of Mathematics and Statistics. 2016;45(2):473-82.