Research Article
BibTex RIS Cite

Characterizing local rings via complete intersection homological dimensions

Year 2019, Volume: 48 Issue: 2, 359 - 364, 01.04.2019

Abstract

Let $(R,m)$ be a commutative Noetherian local ring. It is known that R is Cohen-Macaulay if there exists either a nonzero Cohen-Macaulay R-module of finite projective dimension or a nonzero finitely generated R-module of finite injective dimension. In this article, we will prove the complete intersection analogues of these facts. Also, by using complete intersection homological dimensions, we will characterize local rings which are either regular, complete intersection or Gorenstein.

References

  • M. Auslander and D.A. Buchsbaum, Homological dimension in Noetherian rings, Proc. Nat. Acad. Sci. U.S.A., 42, 1956.
  • M. Auslander and M. Bridger, Stable module theory, American Mathematical Society, Providence, R.L., 94, 1969.
  • L.L. Avramov, V.N. Gasharov and I.V. Peeva, Complete intersection dimension, Inst. Hautes Etudes Sci. 86, 67–114, 1997.
  • N. Bourbaki, Commutative algebra, Chapter 1-7, Springer-Verlag, Berlin, 1998.
  • W. Bruns and J. Herzog, Cohen-Macaulay rings, in: Cambridge Studies in Advanced Math. 39, 1993.
  • D. Bennis and N. Mahdou, First, second, and third change of rings theorems for Gorenstein Homological dimensions, Comm. Algebra, 38 (10), 3837–3850, 2010.
  • L.W. Christensen, Gorenstein dimensions, in: Lecture Notes in Mathematics, 1747, Springer-Verlag, Berlin, 2000.
  • K. Divaani-Aazar, F. Mohammadi Aghjeh Mashhad and M. Tousi, On the existence of certain modules of finite Gorenstein homological dimensions, Comm. Algebra, 42, 1630–1643, 2014.
  • H-B. Foxby and A. Frankild, Cyclic modules of finite Gorenstein injective dimension and Gorenstein rings, Illinois J. Math. 51 (1), 67–82, 2007.
  • H. Holm, Rings with finite Gorenstein injective dimension, Proc. Amer. Math. Soc. 132, 1279–1283, 2004.
  • S. Iyengar, Depth for complexes, and intersection theorems, Math. Z. 230, 545–567, 1999.
  • C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale. Applica- tions à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck, Publ. Math. Inst. Hautes Études Sci., 42, 47–119, 1973.
  • P. Roberts, Multiplicities and chern classes in local algebra, in: Cambridge Tracts in Math. 133, Cambridge University Press, Cambridge, 1998.
  • P. Sahandi, T. Sharif and S. Yassemi, Homological flat dimensions, arXiv:0709.4078v2.
  • J.P. Serre, Sur la dimension homologique des anneaux et des modules Noetheriens, Proc. Intern. Symp., Tokyo-Nikko, 1955, Science Council of Japan, 175–189, 1956.
  • R. Takahashi, Some characterizations of Gorenstein local rings in terms of G- dimension, Acta Math. Hungar. 104 (4), 315–322, 2004.
  • R. Takahashi, The existence of finitely generated modules of finite Gorenstein injective dimension, Proc. Amer. Math. Soc. 134 (11), 3115–3121, 2006.
  • R. Takahashi, On G-regular local rings, Comm. Algebra, 36 (12), 4472–4491, 2008.
  • S.S. Wagstaff, Complete intersection dimensions for complexes, J. Pure Appl. Alge- bra, 190, 267–290, 2004.
  • S.S. Wagstaff, Complete intersection dimensions and Foxby classes, J. Pure Appl. Algebra, 212, 2594–2611, 2008.
  • S. Yassemi, A generalization of a theorem of Bass, Comm. Algebra, 35, 249–251, 2007.
Year 2019, Volume: 48 Issue: 2, 359 - 364, 01.04.2019

Abstract

References

  • M. Auslander and D.A. Buchsbaum, Homological dimension in Noetherian rings, Proc. Nat. Acad. Sci. U.S.A., 42, 1956.
  • M. Auslander and M. Bridger, Stable module theory, American Mathematical Society, Providence, R.L., 94, 1969.
  • L.L. Avramov, V.N. Gasharov and I.V. Peeva, Complete intersection dimension, Inst. Hautes Etudes Sci. 86, 67–114, 1997.
  • N. Bourbaki, Commutative algebra, Chapter 1-7, Springer-Verlag, Berlin, 1998.
  • W. Bruns and J. Herzog, Cohen-Macaulay rings, in: Cambridge Studies in Advanced Math. 39, 1993.
  • D. Bennis and N. Mahdou, First, second, and third change of rings theorems for Gorenstein Homological dimensions, Comm. Algebra, 38 (10), 3837–3850, 2010.
  • L.W. Christensen, Gorenstein dimensions, in: Lecture Notes in Mathematics, 1747, Springer-Verlag, Berlin, 2000.
  • K. Divaani-Aazar, F. Mohammadi Aghjeh Mashhad and M. Tousi, On the existence of certain modules of finite Gorenstein homological dimensions, Comm. Algebra, 42, 1630–1643, 2014.
  • H-B. Foxby and A. Frankild, Cyclic modules of finite Gorenstein injective dimension and Gorenstein rings, Illinois J. Math. 51 (1), 67–82, 2007.
  • H. Holm, Rings with finite Gorenstein injective dimension, Proc. Amer. Math. Soc. 132, 1279–1283, 2004.
  • S. Iyengar, Depth for complexes, and intersection theorems, Math. Z. 230, 545–567, 1999.
  • C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale. Applica- tions à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck, Publ. Math. Inst. Hautes Études Sci., 42, 47–119, 1973.
  • P. Roberts, Multiplicities and chern classes in local algebra, in: Cambridge Tracts in Math. 133, Cambridge University Press, Cambridge, 1998.
  • P. Sahandi, T. Sharif and S. Yassemi, Homological flat dimensions, arXiv:0709.4078v2.
  • J.P. Serre, Sur la dimension homologique des anneaux et des modules Noetheriens, Proc. Intern. Symp., Tokyo-Nikko, 1955, Science Council of Japan, 175–189, 1956.
  • R. Takahashi, Some characterizations of Gorenstein local rings in terms of G- dimension, Acta Math. Hungar. 104 (4), 315–322, 2004.
  • R. Takahashi, The existence of finitely generated modules of finite Gorenstein injective dimension, Proc. Amer. Math. Soc. 134 (11), 3115–3121, 2006.
  • R. Takahashi, On G-regular local rings, Comm. Algebra, 36 (12), 4472–4491, 2008.
  • S.S. Wagstaff, Complete intersection dimensions for complexes, J. Pure Appl. Alge- bra, 190, 267–290, 2004.
  • S.S. Wagstaff, Complete intersection dimensions and Foxby classes, J. Pure Appl. Algebra, 212, 2594–2611, 2008.
  • S. Yassemi, A generalization of a theorem of Bass, Comm. Algebra, 35, 249–251, 2007.
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Fatemeh Mohammadi Aghjeh Mashhad This is me 0000-0002-0417-7490

Publication Date April 1, 2019
Published in Issue Year 2019 Volume: 48 Issue: 2

Cite

APA Mashhad, F. M. A. (2019). Characterizing local rings via complete intersection homological dimensions. Hacettepe Journal of Mathematics and Statistics, 48(2), 359-364.
AMA Mashhad FMA. Characterizing local rings via complete intersection homological dimensions. Hacettepe Journal of Mathematics and Statistics. April 2019;48(2):359-364.
Chicago Mashhad, Fatemeh Mohammadi Aghjeh. “Characterizing Local Rings via Complete Intersection Homological Dimensions”. Hacettepe Journal of Mathematics and Statistics 48, no. 2 (April 2019): 359-64.
EndNote Mashhad FMA (April 1, 2019) Characterizing local rings via complete intersection homological dimensions. Hacettepe Journal of Mathematics and Statistics 48 2 359–364.
IEEE F. M. A. Mashhad, “Characterizing local rings via complete intersection homological dimensions”, Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 2, pp. 359–364, 2019.
ISNAD Mashhad, Fatemeh Mohammadi Aghjeh. “Characterizing Local Rings via Complete Intersection Homological Dimensions”. Hacettepe Journal of Mathematics and Statistics 48/2 (April 2019), 359-364.
JAMA Mashhad FMA. Characterizing local rings via complete intersection homological dimensions. Hacettepe Journal of Mathematics and Statistics. 2019;48:359–364.
MLA Mashhad, Fatemeh Mohammadi Aghjeh. “Characterizing Local Rings via Complete Intersection Homological Dimensions”. Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 2, 2019, pp. 359-64.
Vancouver Mashhad FMA. Characterizing local rings via complete intersection homological dimensions. Hacettepe Journal of Mathematics and Statistics. 2019;48(2):359-64.